121 research outputs found
Information-Theoretic Bounds for Steganography in Multimedia
Steganography in multimedia aims to embed secret data into an innocent
looking multimedia cover object. This embedding introduces some distortion to
the cover object and produces a corresponding stego object. The embedding
distortion is measured by a cost function that determines the detection
probability of the existence of the embedded secret data. A cost function
related to the maximum embedding rate is typically employed to evaluate a
steganographic system. In addition, the distribution of multimedia sources
follows the Gibbs distribution which is a complex statistical model that
restricts analysis. Thus, previous multimedia steganographic approaches either
assume a relaxed distribution or presume a proposition on the maximum embedding
rate and then try to prove it is correct. Conversely, this paper introduces an
analytic approach to determining the maximum embedding rate in multimedia cover
objects through a constrained optimization problem concerning the relationship
between the maximum embedding rate and the probability of detection by any
steganographic detector. The KL-divergence between the distributions for the
cover and stego objects is used as the cost function as it upper bounds the
performance of the optimal steganographic detector. An equivalence between the
Gibbs and correlated-multivariate-quantized-Gaussian distributions is
established to solve this optimization problem. The solution provides an
analytic form for the maximum embedding rate in terms of the WrightOmega
function. Moreover, it is proven that the maximum embedding rate is in
agreement with the commonly used Square Root Law (SRL) for steganography, but
the solution presented here is more accurate. Finally, the theoretical results
obtained are verified experimentally.Comment: arXiv admin note: substantial text overlap with arXiv:2111.0496
Development of Mouse Hepatocyte Lines Permissive for Hepatitis C Virus (HCV)
The lack of a suitable small animal model for the analysis of hepatitis C virus (HCV) infection has hampered elucidation of the HCV life cycle and the development of both protective and therapeutic strategies against HCV infection. Human and mouse harbor a comparable system for antiviral type I interferon (IFN) induction and amplification, which regulates viral infection and replication. Using hepatocytes from knockout (ko) mice, we determined the critical step of the IFN-inducing/amplification pathways regulating HCV replication in mouse. The results infer that interferon-beta promoter stimulator (IPS-1) or interferon A receptor (IFNAR) were a crucial barrier to HCV replication in mouse hepatocytes. Although both IFNARko and IPS-1ko hepatocytes showed a reduced induction of type I interferons in response to viral infection, only IPS-1-/- cells circumvented cell death from HCV cytopathic effect and significantly improved J6JFH1 replication, suggesting IPS-1 to be a key player regulating HCV replication in mouse hepatocytes. We then established mouse hepatocyte lines lacking IPS-1 or IFNAR through immortalization with SV40T antigen. Expression of human (h)CD81 on these hepatocyte lines rendered both lines HCVcc-permissive. We also found that the chimeric J6JFH1 construct, having the structure region from J6 isolate enhanced HCV replication in mouse hepatocytes rather than the full length original JFH1 construct, a new finding that suggests the possible role of the HCV structural region in HCV replication. This is the first report on the entry and replication of HCV infectious particles in mouse hepatocytes. These mouse hepatocyte lines will facilitate establishing a mouse HCV infection model with multifarious applications
Neutralization of hepatitis B virus with vaccine-escape mutations by hepatitis B vaccine with large-HBs antigen
優れたB型肝炎予防ワクチン開発に成功 --既存ワクチンの弱点克服へ--. 京都大学プレスリリース. 2022-09-07.Although the current hepatitis B (HB) vaccine comprising small-HBs antigen (Ag) is potent and safe, attenuated prophylaxis against hepatitis B virus (HBV) with vaccine-escape mutations (VEMs) has been reported. We investigate an HB vaccine consisting of large-HBsAg that overcomes the shortcomings of the current HB vaccine. Yeast-derived large-HBsAg is immunized into rhesus macaques, and the neutralizing activities of the induced antibodies are compared with those of the current HB vaccine. Although the antibodies induced by the current HB vaccine cannot prevent HBV infection with VEMs, the large-HBsAg vaccine-induced antibodies neutralize those infections. The HBV genotypes that exhibited attenuated neutralization via these vaccines are different. Here, we show that the HB vaccine consisting of large-HBsAg is useful to compensate for the shortcomings of the current HB vaccine. The combined use of these HB vaccines may induce antibodies that can neutralize HBV strains with VEMs or multiple HBV genotypes
a systematic analysis for the Global Burden of Disease Study 2021
Funding Information: Research reported in this publication was supported by the Bill & Melinda Gates Foundation (OPP1152504); Queensland Department of Health, Australia; UK Department of Health and Social Care; the Norwegian Institute of Public Health; St Jude Children's Research Hospital; and the New Zealand Ministry of Health. The content is solely the responsibility of the authors and does not necessarily represent the official views of the funders. Data for this research was provided by MEASURE Evaluation, funded by the US Agency for International Development (USAID). Views expressed do not necessarily reflect those of USAID, the US Government, or MEASURE Evaluation. This study uses a dataset provided by European Centre for Disease Prevention and Control (ECDC) based on data provided by WHO and Ministries of Health from the affected countries. The views and opinions of the authors expressed herein do not necessarily state or reflect those of the ECDC. The accuracy of the authors' statistical analysis and the findings they report are not the responsibility of ECDC. ECDC is not responsible for conclusions or opinions drawn from the data provided. ECDC is not responsible for the correctness of the data and for data management, data merging, and data collation after provision of the data. ECDC shall not be held liable for improper or incorrect use of the data. Health Behaviour in School-Aged Children (HBSC) is an international study carried out in collaboration with WHO/EURO. The international coordinator of the 1997\u201398, 2001\u201302, 2005\u201306, and 2009\u201310 surveys was Candace Currie and the Data Bank Manager for the 1997\u201398 survey was Bente Wold, whereas for the following survey Oddrun Samda was the databank manager. A list of principal investigators in each country can be found at http://www.hbsc.org. Parts of this material are based on data and information provided by the Canadian institute for Health Information. However, the analyses, conclusions, opinions and statements expressed herein are those of the author and not those of the Canadian Institute for Health information. The data reported here have been supplied by the US Renal Data System (USRDS). The interpretation and reporting of these data are the responsibility of the authors and in no way should be seen as an official policy or interpretation of the US Government. The data used in this paper come from the 2009\u201310 Ghana Socioeconomic Panel Study Survey which is a nationally representative survey of over 5,000 households in Ghana. The survey is a joint effort undertaken by the Institute of Statistical, Social and Economic Research (ISSER) at the University of Ghana, and the Economic Growth Centre (EGC) at Yale University. It was funded by the Economic Growth Center. At the same time, ISSER and the EGC are not responsible for the estimations reported by the analyst(s). The harmonised dataset was downloaded from the Global Dietary Database (GDD) website ( https://www.globaldietarydatabase.org/). The Canadian Community Health Survey - Nutrition (CCHS-Nutrition), 2015 is available online ( https://www.globaldietarydatabase.org/management/microdata-surveys/650). The harmonisation of the original dataset was performed by GDD. The data was adapted from Statistics Canada, Canadian Community Health Survey: Public Use Microdata File, 2015/2016 (Statistics Canada. CCHS-Nutrition, 2015); this does not constitute an endorsement by Statistics Canada of this product. The data is used under the terms of the Statistics Canada Open Licence (Statistics Canada. Statistics Canada Open Licence. https://www.statcan.gc.ca/eng/reference/licence). The Health and Retirement Study (HRS) is sponsored by the National Institute on Aging (grant number NIA U01AG009740) and is conducted by the University of Michigan. The Palestinian Central Bureau of Statistics granted the researchers access to relevant data in accordance with license no. SLN2014-3-170, after subjecting data to processing aiming to preserve the confidentiality of individual data in accordance with the General Statistics Law - 2000. The researchers are solely responsible for the conclusions and inferences drawn upon available data. The results and conclusions are mine and not those of Eurostat, the European Commission, or any of the national statistical authorities whose data have been used. This manuscript is based on data collected and shared by the International Vaccine Institute (IVI) from an original study it conducted with support from the Bill & Melinda Gates Foundation. This paper uses data from SHARE Waves 1, 2, 3 (SHARELIFE), 4, 5 and 6 (dois: 10.6103/SHARE.w1.611,10.6103/SHARE.w2.611, 10.6103/SHARE.w3.611, 10.6103/SHARE.w4.611, 10.6103/SHARE.w5.611, 10.6103/SHARE.w6.611), see B\u00F6rsch-Supan et al. (2013) for methodological details. The SHARE data collection has been primarily funded by the European Commission through FP5 (QLK6-CT-2001-00360), FP6 (SHARE-I3: RII-CT-2006-062193, COMPARE: CIT5-CT-2005-028857, SHARELIFE: CIT4-CT-2006- 028812) and FP7 (SHARE-PREP: N\u00B0211909, SHARE-LEAP: N\u00B0227822, SHARE M4: N\u00B0261982). Additional funding from the German Ministry of Education and Research, the Max Planck Society for the Advancement of Science, the US National Institute on Aging (U01_AG09740-13S2, P01_AG005842, P01_AG08291, P30_AG12815, R21_AG025169, Y1-AG-4553-01, IAG_BSR06-11, OGHA_04-064, HHSN271201300071C) and from various national funding sources is gratefully acknowledged (see www.share-project.org). This paper uses data from the Algeria - Setif and Mostaganem 2003 STEPS survey, implemented by Ministry of Health, Population and Hospital Reform (Algeria) with the support of WHO. This paper uses data from the Algeria 2016-2017 STEPS survey, implemented by Ministry of Health (Algeria) with the support of WHO. This paper uses data from the American Samoa 2004 STEPS survey, implemented by Department of Health (American Samoa) and Monash University (Australia) with the support of WHO. This paper uses data from the Armenia 2016 STEPS survey, implemented by Ministry of Health (Botswana) with the support of WHO. This paper uses data from the Azerbaijan 2017 STEPS survey, implemented by Ministry of Health (Azerbaijan) with the support of WHO. This paper uses data from the Bangladesh 2018 STEPS survey, implemented by Ministry of Health and Family Welfare (Bangladesh) with the support of WHO. This paper uses data from the Barbados 2007 STEPS survey, implemented by Ministry of Health (Barbados) with the support of WHO. This paper uses data from the Belarus 2016-2017 STEPS survey, implemented by Republican Scientific and Practical Center of Medical Technologies, Informatization, Management and Economics of Public Health (Belarus) with the support of WHO. This paper uses data from the Benin - Littoral 2007 STEPS survey, the Benin 2008 STEPS survey, and the Benin 2015 STEPS survey, implemented by Ministry of Health (Benin) with the support of WHO. This paper uses data from the Bhutan - Thimphu 2007 STEPS survey, implemented by Ministry of Health (Bhutan) with the support of WHO. This paper uses data from the Bhutan 2014 STEPS survey, implemented by Ministry of Health (Bhutan) with the support of the World Health Organization. This paper uses data from the Botswana 2014 STEPS survey, implemented by Ministry of Health (Armenia), National Institute of Health with the support of WHO. This paper uses data from the Brunei 2015-2016 STEPS survey, implemented by Ministry of Health (Brunei) with the support of WHO. This paper uses data from the Cambodia 2010 STEPS survey, implemented by Ministry of Health (Cambodia) with the support of WHO. This paper uses data from the Cameroon 2003 STEPS survey, implemented by Health of Populations in Transition (HoPiT) Research Group (Cameroon) and Ministry of Public Health (Cameroon) with the support of WHO. This paper uses data from the Cape Verde 2007 STEPS survey, implemented by Ministry of Health, National Statistics Office with the support of WHO. This paper uses data from the Central African Republic - Bangui 2010 STEPS survey and Central African Republic - Bangui and Ombella M'Poko 2016 STEPS survey, implemented by Ministry of Health and Population (Central African Republic) with the support of WHO. This paper uses data from the Comoros 2011 STEPS survey, implemented by Ministry of Health (Comoros) with the support of WHO. This paper uses data from the Congo - Brazzaville 2004 STEPS survey, implemented by Ministry of Health, Population and Hospital Reform (Algeria) with the support of WHO. This paper uses data from the Cook Islands 2003\u20132004 survey and Cook Islands 2013\u20132015 STEPS survey, implemented by Ministry of Health (Cook Islands) with the support of WHO. This paper uses data from the Eritrea 2010 STEPS survey, implemented by Ministry of Health (Eritrea) with the support of WHO. This paper uses data from the Fiji 2002 STEPS survey, implemented by Fiji School of Medicine, Menzies Center for Population Health Research, University of Tasmania (Australia), Ministry of Health (Fiji) with the support of WHO. This paper uses data from the Fiji 2011 STEPS survey, implemented by Ministry of Health (Fiji) with the support of WHO. This paper uses data from the Georgia 2016 STEPS survey, implemented by National Center for Disease Control and Public Health (Georgia) with the support of WHO. This paper uses data from the Ghana - Greater Accra Region 2006 STEPS survey, implemented by Ghana Health Service with the support of WHO. This paper uses data from the Guniea 2009 STEPS survey, implemented by Ministry of Public Health and Hygiene (Guinea) with the support of WHO. This paper uses data from the Guyana 2016 STEPS survey, implemented by Ministry of Health (Guyana) with the support of WHO. This paper uses data from the Iraq 2015 STEPS survey, implemented by Ministry of Health (Iraq) with the support of WHO. This paper uses data from the Kenya 2015 STEPS survey, implemented by Kenya National Bureau of Statistics, Ministry of Health (Kenya) with the support of WHO. This paper uses data from the Kiribati 2004\u20132006 STEPS survey and the Kiribati 2016 survey, implemented by Ministry of Health and Medical Services (Kiribati) with the support of WHO. This paper uses data from the Kuwait 2006 STEPS survey and the Kuwait 2014 STEPS survey, implemented by Ministry of Health (Kuwait) with the support of WHO. This paper uses data from the Kyrgyzstan 2013 STEPS survey, implemented by Ministry of Health (Kyrgyzstan) with the support of WHO. This paper uses data from the Laos 2013 STEPS survey, implemented by Ministry of Health (Laos) with the support of WHO. This paper uses data from the Lebanon 2016-2017 STEPS survey, implemented by Ministry of Public Health (Lebanon) with the support of WHO. This paper uses data from the Lesotho 2012 STEPS survey, implemented by Ministry of Health and Social Welfare (Lesotho) with the support of WHO. This paper uses data from the Liberia 2011 STEPS survey, implemented by Ministry of Health and Social Welfare (Liberia) with the support of WHO. This paper uses data from the Libya 2009 STEPS survey, implemented by Secretariat of Health and Environment (Libya) with the support of WHO. This paper uses data from the Malawi 2009 STEPS survey and Malawi 2017 STEPS survey, implemented by Ministry of Health (Malawi) with the support of WHO. This paper uses data from the Mali 2007 STEPS survey, implemented by Ministry of Health (Mali) with the support of WHO. This paper uses data from the Marshall Islands 2002 STEPS survey and the Marshall Islands 2017-2018 STEPS survey, implemented by Ministry of Health (Marshall Islands) with the support of WHO. This paper uses data from the Mauritania- Nouakchott 2006 STEPS survey, implemented by Ministry of Health (Mauritania) with the support of WHO. This paper uses data from the Micronesia - Chuuk 2006 STEPS survey, implemented by Ministry of Health (Palestine) with the support of WHO. This paper uses data from the Micronesia - Chuuk 2016 STEPS survey, implemented by Chuuk Department of Health Services (Micronesia), Department of Health and Social Affairs (Micronesia) with the support of WHO. This paper uses data from the Micronesia - Pohnpei 2002 STEPS survey, implemented by Centre for Physical Activity and Health, University of Sydney (Australia), Department of Health and Social Affairs (Micronesia), Fiji School of Medicine, Micronesia Human Resources Development Center, Pohnpei State Department of Health Services with the support of WHO. This paper uses data from the Micronesia - Pohnpei 2008 STEPS survey, implemented by FSM Department of Health and Social Affairs, Pohnpei State Department of Health Services with the support of WHO. This paper uses data from the Micronesia - Yap 2009 STEPS survey, implemented by Ministry of Health and Social Affairs (Micronesia) with the support of WHO. This paper uses data from the Micronesia- Kosrae 2009 STEPS survey, implemented by FSM Department of Health and Social Affairs with the support of WHO. This paper uses data from the Moldova 2013 STEPS survey, implemented by Ministry of Health (Moldova) with the support of WHO. This paper uses data from the Mongolia 2005 STEPS survey, the Mongolia 2009 STEPS survey, and the Mongolia 2013 STEPS survey, implemented by Ministry of Health (Mongolia) with the support of WHO. This paper uses data from the Morocco 2017 STEPS survey, implemented by Ministry of Health (Morocco) with the support of WHO. This paper uses data from the Mozambique 2005 STEPS survey, implemented by Ministry of Health (Mozambique) with the support of WHO. This paper uses data from the Myanmar 2014 STEPS survey, implemented by Ministry of Health (Myanmar) with the support of WHO. This paper uses data from the Nauru 2004 STEPS survey and the Nauru 2015\u20132016 STEPS survey, implemented by Ministry of Health (Nauru) with the support of WHO. This paper uses data from the Niger 2007 STEPS survey, implemented by Ministry of Health (Niger) with the support of WHO. This paper uses data from the Palau 2011-2013 STEPS survey and the Palau 2016 STEPS survey, implemented by Ministry of Health (Palau) with the support of WHO. This paper uses data from the Palestine 2010-2011 STEPS survey, implemented by Chuuk Department of Health Services (Micronesia), Department of Health and Social Affairs (Micronesia) with the support of WHO. This paper uses data from the Qatar 2012 STEPS survey, implemented by Supreme Council of Health (Qatar) with the support of WHO. This paper uses data from the Rwanda 2012-2013 STEPS survey, implemented by Ministry of Health (Rwanda) with the support of WHO. This paper uses data from the Samoa 2002 STEPS survey and the Samoa 2013 STEPS survey, implemented by Ministry of Health (Samoa) with the support of WHO. This paper uses data from the Sao Tome and Principe 2008 STEPS survey, implemented by Ministry of Health (Sao Tome and Principe) with the support of WHO. This paper uses data from the Seychelles 2004 STEPS survey, implemented by Ministry of Health (Seychelles) with the support of WHO. This paper uses data from the Solomon Islands 2005\u20132006 STEPS survey and the Solomon Islands 2015 STEPS survey, implemented by Ministry of Health and Medical Services (Solomon Islands) with the support of WHO. This paper uses data from the Sri Lanka 2014\u20132015 STEPS survey, implemented by Ministry of Health (Sri Lanka) with the support of WHO. This paper uses data from the Sudan 2016 STEPS survey, implemented by Ministry of Health (Sudan) with the support of WHO. This paper uses data from the Swaziland 2007 STEPS survey and the Swaziland 2014 STEPS survey, implemented by Ministry of Health (Swaziland) with the support of WHO. This paper uses data from the Tajikistan 2016 STEPS survey, implemented by Ministry of Health (Tajikistan) with the support of WHO. This paper uses data from the Tanzania - Zanzibar 2011 STEPS survey, implemented by Ministry of Health (Zanzibar) with the support of WHO. This paper uses data from the Tanzania 2012 STEPS survey, implemented by National Institute for Medical Research (Tanzania) with the support of WHO. This paper uses data from the Timor-Leste 2014 STEPS survey, implemented by Ministry of Health (Timor-Leste) with the support of WHO. This paper uses data from the Togo 2010\u20132011 STEPS survey, implemented by Ministry of Health (Togo) with the support of WHO. This paper uses data from the Tokelau 2005 STEPS survey, implemented by Tokelau Department of Health, Fiji School of Medicine with the support of WHO. This paper uses data from the Tonga 2004 STEPS survey and the Tonga 2011\u20132012 STEPS survey, implemented by Ministry of Health (Tonga) with the support of WHO. This paper uses data from the Tuvalu 2015 STEPS survey, implemented by Ministry of Health (Tuvalu), with the support of WHO. This paper uses data from the Uganda 2014 STEPS survey, implemented by Ministry of Health (Uganda) with the support of WHO. This paper uses data from the Uruguay 2006 STEPS survey and the Uruguay 2013-2014 STEPS survey, implemented by Ministry of Health (Uruguay) with the support of WHO. This paper uses data from the Vanuatu 2011 STEPS survey, implemented by Ministry of Health (Vanuatu) with the support of WHO. This paper uses data from the Viet Nam 2009 STEPS survey and the Viet Nam 2015 STEPS survey, implemented by Ministry of Health (Viet Nam) with the support of WHO. This paper uses data from the Virgin Islands, British 2009 STEPS survey, implemented by Ministry of Health and Social Development (British Virgin Islands) with the support of WHO. This paper uses data from the Zambia - Lusaka 2008 STEPS survey, implemented by Ministry of Health (Zambia) with the support of WHO. This paper uses data from the Zambia 2017 STEPS survey, implemented by Ministry of Health (Zambia) with the support of WHO. This research used data from the Chile National Health Survey 2003, 2009\u201310, and 2016\u201317. The authors are grateful to the Ministry of Health, survey copyright owner, for allowing them to have the database. All results of the study are those of the author and in no way committed to the Ministry. This research used information from the Health Surveys for epidemiological surveillance of the Undersecretary of Public Health. The authors thank the Ministry of Health of Chile, having allowed them to have access to the database. All the results obtained from the study or research are the responsibility of the authors and in no way compromise that institution. This research uses data from Add Health, a program project designed by J Richard Udry, Peter S Bearman, and Kathleen Mullan Harris, and funded by a grant P01-HD31921 from the Eunice Kennedy Shriver National Institute of Child Health and Human Development, with cooperative funding from 17 other agencies. Special acknowledgment is due to Ronald R Rindfuss and Barbara Entwisle for assistance in the original design. Persons interested in obtaining data files from Add Health should contact Add Health, Carolina Population Center, 123 W. Franklin Street, Chapel Hill, NC 27516-2524, USA ( [email protected]). No direct support was received from grant P01-HD31921 for this analysis. This study has been realised using the data collected by the Swiss Household Panel (SHP), which is based at the Swiss Centre of Expertise in the Social Sciences FORS. The project is financed by the Swiss National Science Foundation. We thank the Russia Longitudinal Monitoring Survey, RLMS-HSE, conducted by the National Research University Higher School of Economics and ZAO Demoscope together with Carolina Population Center, University of North Carolina at Chapel Hill, and the Institute of Sociology RAS for making these data available. Editorial note: The Lancet Group takes a neutral position with respect to territorial claims in published maps and institutional affiliations. Publisher Copyright: © 2024 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 licenseBackground: Detailed, comprehensive, and timely reporting on population health by underlying causes of disability and premature death is crucial to understanding and responding to complex patterns of disease and injury burden over time and across age groups, sexes, and locations. The availability of disease burden estimates can promote evidence-based interventions that enable public health researchers, policy makers, and other professionals to implement strategies that can mitigate diseases. It can also facilitate more rigorous monitoring of progress towards national and international health targets, such as the Sustainable Development Goals. For three decades, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) has filled that need. A global network of collaborators contributed to the production of GBD 2021 by providing, reviewing, and analysing all available data. GBD estimates are updated routinely with additional data and refined analytical methods. GBD 2021 presents, for the first time, estimates of health loss due to the COVID-19 pandemic. Methods: The GBD 2021 disease and injury burden analysis estimated years lived with disability (YLDs), years of life lost (YLLs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries using 100 983 data sources. Data were extracted from vital registration systems, verbal autopsies, censuses, household surveys, disease-specific registries, health service contact data, and other sources. YLDs were calculated by multiplying cause-age-sex-location-year-specific prevalence of sequelae by their respective disability weights, for each disease and injury. YLLs were calculated by multiplying cause-age-se
Mapping local patterns of childhood overweight and wasting in low- and middle-income countries between 2000 and 2017
A double burden of malnutrition occurs when individuals, household members or communities experience both undernutrition and overweight. Here, we show geospatial estimates of overweight and wasting prevalence among children under 5 years of age in 105 low- and middle-income countries (LMICs) from 2000 to 2017 and aggregate these to policy-relevant administrative units. Wasting decreased overall across LMICs between 2000 and 2017, from 8.4% (62.3 (55.1–70.8) million) to 6.4% (58.3 (47.6–70.7) million), but is predicted to remain above the World Health Organization’s Global Nutrition Target of <5% in over half of LMICs by 2025. Prevalence of overweight increased from 5.2% (30 (22.8–38.5) million) in 2000 to 6.0% (55.5 (44.8–67.9) million) children aged under 5 years in 2017. Areas most affected by double burden of malnutrition were located in Indonesia, Thailand, southeastern China, Botswana, Cameroon and central Nigeria. Our estimates provide a new perspective to researchers, policy makers and public health agencies in their efforts to address this global childhood syndemic
Burnout among surgeons before and during the SARS-CoV-2 pandemic: an international survey
Background: SARS-CoV-2 pandemic has had many significant impacts within the surgical realm, and surgeons have been obligated to reconsider almost every aspect of daily clinical practice. Methods: This is a cross-sectional study reported in compliance with the CHERRIES guidelines and conducted through an online platform from June 14th to July 15th, 2020. The primary outcome was the burden of burnout during the pandemic indicated by the validated Shirom-Melamed Burnout Measure. Results: Nine hundred fifty-four surgeons completed the survey. The median length of practice was 10 years; 78.2% included were male with a median age of 37 years old, 39.5% were consultants, 68.9% were general surgeons, and 55.7% were affiliated with an academic institution. Overall, there was a significant increase in the mean burnout score during the pandemic; longer years of practice and older age were significantly associated with less burnout. There were significant reductions in the median number of outpatient visits, operated cases, on-call hours, emergency visits, and research work, so, 48.2% of respondents felt that the training resources were insufficient. The majority (81.3%) of respondents reported that their hospitals were included in the management of COVID-19, 66.5% felt their roles had been minimized; 41% were asked to assist in non-surgical medical practices, and 37.6% of respondents were included in COVID-19 management. Conclusions: There was a significant burnout among trainees. Almost all aspects of clinical and research activities were affected with a significant reduction in the volume of research, outpatient clinic visits, surgical procedures, on-call hours, and emergency cases hindering the training. Trial registration: The study was registered on clicaltrials.gov "NCT04433286" on 16/06/2020
Laparoscopy in management of appendicitis in high-, middle-, and low-income countries: a multicenter, prospective, cohort study.
BACKGROUND: Appendicitis is the most common abdominal surgical emergency worldwide. Differences between high- and low-income settings in the availability of laparoscopic appendectomy, alternative management choices, and outcomes are poorly described. The aim was to identify variation in surgical management and outcomes of appendicitis within low-, middle-, and high-Human Development Index (HDI) countries worldwide. METHODS: This is a multicenter, international prospective cohort study. Consecutive sampling of patients undergoing emergency appendectomy over 6 months was conducted. Follow-up lasted 30 days. RESULTS: 4546 patients from 52 countries underwent appendectomy (2499 high-, 1540 middle-, and 507 low-HDI groups). Surgical site infection (SSI) rates were higher in low-HDI (OR 2.57, 95% CI 1.33-4.99, p = 0.005) but not middle-HDI countries (OR 1.38, 95% CI 0.76-2.52, p = 0.291), compared with high-HDI countries after adjustment. A laparoscopic approach was common in high-HDI countries (1693/2499, 67.7%), but infrequent in low-HDI (41/507, 8.1%) and middle-HDI (132/1540, 8.6%) groups. After accounting for case-mix, laparoscopy was still associated with fewer overall complications (OR 0.55, 95% CI 0.42-0.71, p < 0.001) and SSIs (OR 0.22, 95% CI 0.14-0.33, p < 0.001). In propensity-score matched groups within low-/middle-HDI countries, laparoscopy was still associated with fewer overall complications (OR 0.23 95% CI 0.11-0.44) and SSI (OR 0.21 95% CI 0.09-0.45). CONCLUSION: A laparoscopic approach is associated with better outcomes and availability appears to differ by country HDI. Despite the profound clinical, operational, and financial barriers to its widespread introduction, laparoscopy could significantly improve outcomes for patients in low-resource environments. TRIAL REGISTRATION: NCT02179112
Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021
BACKGROUND: Disorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021. METHODS: We estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined. FINDINGS: Globally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer. INTERPRETATION: As the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed
Global incidence, prevalence, years lived with disability (YLDs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries in 204 countries and territories and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021
Background: Detailed, comprehensive, and timely reporting on population health by underlying causes of disability and premature death is crucial to understanding and responding to complex patterns of disease and injury burden over time and across age groups, sexes, and locations. The availability of disease burden estimates can promote evidence-based interventions that enable public health researchers, policy makers, and other professionals to implement strategies that can mitigate diseases. It can also facilitate more rigorous monitoring of progress towards national and international health targets, such as the Sustainable Development Goals. For three decades, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) has filled that need. A global network of collaborators contributed to the production of GBD 2021 by providing, reviewing, and analysing all available data. GBD estimates are updated routinely with additional data and refined analytical methods. GBD 2021 presents, for the first time, estimates of health loss due to the COVID-19 pandemic. Methods: The GBD 2021 disease and injury burden analysis estimated years lived with disability (YLDs), years of life lost (YLLs), disability-adjusted life-years (DALYs), and healthy life expectancy (HALE) for 371 diseases and injuries using 100 983 data sources. Data were extracted from vital registration systems, verbal autopsies, censuses, household surveys, disease-specific registries, health service contact data, and other sources. YLDs were calculated by multiplying cause-age-sex-location-year-specific prevalence of sequelae by their respective disability weights, for each disease and injury. YLLs were calculated by multiplying cause-age-sex-location-year-specific deaths by the standard life expectancy at the age that death occurred. DALYs were calculated by summing YLDs and YLLs. HALE estimates were produced using YLDs per capita and age-specific mortality rates by location, age, sex, year, and cause. 95% uncertainty intervals (UIs) were generated for all final estimates as the 2·5th and 97·5th percentiles values of 500 draws. Uncertainty was propagated at each step of the estimation process. Counts and age-standardised rates were calculated globally, for seven super-regions, 21 regions, 204 countries and territories (including 21 countries with subnational locations), and 811 subnational locations, from 1990 to 2021. Here we report data for 2010 to 2021 to highlight trends in disease burden over the past decade and through the first 2 years of the COVID-19 pandemic. Findings: Global DALYs increased from 2·63 billion (95% UI 2·44–2·85) in 2010 to 2·88 billion (2·64–3·15) in 2021 for all causes combined. Much of this increase in the number of DALYs was due to population growth and ageing, as indicated by a decrease in global age-standardised all-cause DALY rates of 14·2% (95% UI 10·7–17·3) between 2010 and 2019. Notably, however, this decrease in rates reversed during the first 2 years of the COVID-19 pandemic, with increases in global age-standardised all-cause DALY rates since 2019 of 4·1% (1·8–6·3) in 2020 and 7·2% (4·7–10·0) in 2021. In 2021, COVID-19 was the leading cause of DALYs globally (212·0 million [198·0–234·5] DALYs), followed by ischaemic heart disease (188·3 million [176·7–198·3]), neonatal disorders (186·3 million [162·3–214·9]), and stroke (160·4 million [148·0–171·7]). However, notable health gains were seen among other leading communicable, maternal, neonatal, and nutritional (CMNN) diseases. Globally between 2010 and 2021, the age-standardised DALY rates for HIV/AIDS decreased by 47·8% (43·3–51·7) and for diarrhoeal diseases decreased by 47·0% (39·9–52·9). Non-communicable diseases contributed 1·73 billion (95% UI 1·54–1·94) DALYs in 2021, with a decrease in age-standardised DALY rates since 2010 of 6·4% (95% UI 3·5–9·5). Between 2010 and 2021, among the 25 leading Level 3 causes, age-standardised DALY rates increased most substantially for anxiety disorders (16·7% [14·0–19·8]), depressive disorders (16·4% [11·9–21·3]), and diabetes (14·0% [10·0–17·4]). Age-standardised DALY rates due to injuries decreased globally by 24·0% (20·7–27·2) between 2010 and 2021, although improvements were not uniform across locations, ages, and sexes. Globally, HALE at birth improved slightly, from 61·3 years (58·6–63·6) in 2010 to 62·2 years (59·4–64·7) in 2021. However, despite this overall increase, HALE decreased by 2·2% (1·6–2·9) between 2019 and 2021. Interpretation: Putting the COVID-19 pandemic in the context of a mutually exclusive and collectively exhaustive list of causes of health loss is crucial to understanding its impact and ensuring that health funding and policy address needs at both local and global levels through cost-effective and evidence-based interventions. A global epidemiological transition remains underway. Our findings suggest that prioritising non-communicable disease prevention and treatment policies, as well as strengthening health systems, continues to be crucially important. The progress on reducing the burden of CMNN diseases must not stall; although global trends are improving, the burden of CMNN diseases remains unacceptably high. Evidence-based interventions will help save the lives of young children and mothers and improve the overall health and economic conditions of societies across the world. Governments and multilateral organisations should prioritise pandemic preparedness planning alongside efforts to reduce the burden of diseases and injuries that will strain resources in the coming decades. Funding: Bill & Melinda Gates Foundation
Global burden and strength of evidence for 88 risk factors in 204 countries and 811 subnational locations, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021
Background: Understanding the health consequences associated with exposure to risk factors is necessary to inform public health policy and practice. To systematically quantify the contributions of risk factor exposures to specific health outcomes, the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 aims to provide comprehensive estimates of exposure levels, relative health risks, and attributable burden of disease for 88 risk factors in 204 countries and territories and 811 subnational locations, from 1990 to 2021. Methods: The GBD 2021 risk factor analysis used data from 54 561 total distinct sources to produce epidemiological estimates for 88 risk factors and their associated health outcomes for a total of 631 risk–outcome pairs. Pairs were included on the basis of data-driven determination of a risk–outcome association. Age-sex-location-year-specific estimates were generated at global, regional, and national levels. Our approach followed the comparative risk assessment framework predicated on a causal web of hierarchically organised, potentially combinative, modifiable risks. Relative risks (RRs) of a given outcome occurring as a function of risk factor exposure were estimated separately for each risk–outcome pair, and summary exposure values (SEVs), representing risk-weighted exposure prevalence, and theoretical minimum risk exposure levels (TMRELs) were estimated for each risk factor. These estimates were used to calculate the population attributable fraction (PAF; ie, the proportional change in health risk that would occur if exposure to a risk factor were reduced to the TMREL). The product of PAFs and disease burden associated with a given outcome, measured in disability-adjusted life-years (DALYs), yielded measures of attributable burden (ie, the proportion of total disease burden attributable to a particular risk factor or combination of risk factors). Adjustments for mediation were applied to account for relationships involving risk factors that act indirectly on outcomes via intermediate risks. Attributable burden estimates were stratified by Socio-demographic Index (SDI) quintile and presented as counts, age-standardised rates, and rankings. To complement estimates of RR and attributable burden, newly developed burden of proof risk function (BPRF) methods were applied to yield supplementary, conservative interpretations of risk–outcome associations based on the consistency of underlying evidence, accounting for unexplained heterogeneity between input data from different studies. Estimates reported represent the mean value across 500 draws from the estimate's distribution, with 95% uncertainty intervals (UIs) calculated as the 2·5th and 97·5th percentile values across the draws. Findings: Among the specific risk factors analysed for this study, particulate matter air pollution was the leading contributor to the global disease burden in 2021, contributing 8·0% (95% UI 6·7–9·4) of total DALYs, followed by high systolic blood pressure (SBP; 7·8% [6·4–9·2]), smoking (5·7% [4·7–6·8]), low birthweight and short gestation (5·6% [4·8–6·3]), and high fasting plasma glucose (FPG; 5·4% [4·8–6·0]). For younger demographics (ie, those aged 0–4 years and 5–14 years), risks such as low birthweight and short gestation and unsafe water, sanitation, and handwashing (WaSH) were among the leading risk factors, while for older age groups, metabolic risks such as high SBP, high body-mass index (BMI), high FPG, and high LDL cholesterol had a greater impact. From 2000 to 2021, there was an observable shift in global health challenges, marked by a decline in the number of all-age DALYs broadly attributable to behavioural risks (decrease of 20·7% [13·9–27·7]) and environmental and occupational risks (decrease of 22·0% [15·5–28·8]), coupled with a 49·4% (42·3–56·9) increase in DALYs attributable to metabolic risks, all reflecting ageing populations and changing lifestyles on a global scale. Age-standardised global DALY rates attributable to high BMI and high FPG rose considerably (15·7% [9·9–21·7] for high BMI and 7·9% [3·3–12·9] for high FPG) over this period, with exposure to these risks increasing annually at rates of 1·8% (1·6–1·9) for high BMI and 1·3% (1·1–1·5) for high FPG. By contrast, the global risk-attributable burden and exposure to many other risk factors declined, notably for risks such as child growth failure and unsafe water source, with age-standardised attributable DALYs decreasing by 71·5% (64·4–78·8) for child growth failure and 66·3% (60·2–72·0) for unsafe water source. We separated risk factors into three groups according to trajectory over time: those with a decreasing attributable burden, due largely to declining risk exposure (eg, diet high in trans-fat and household air pollution) but also to proportionally smaller child and youth populations (eg, child and maternal malnutrition); those for which the burden increased moderately in spite of declining risk exposure, due largely to population ageing (eg, smoking); and those for which the burden increased considerably due to both increasing risk exposure and population ageing (eg, ambient particulate matter air pollution, high BMI, high FPG, and high SBP). Interpretation: Substantial progress has been made in reducing the global disease burden attributable to a range of risk factors, particularly those related to maternal and child health, WaSH, and household air pollution. Maintaining efforts to minimise the impact of these risk factors, especially in low SDI locations, is necessary to sustain progress. Successes in moderating the smoking-related burden by reducing risk exposure highlight the need to advance policies that reduce exposure to other leading risk factors such as ambient particulate matter air pollution and high SBP. Troubling increases in high FPG, high BMI, and other risk factors related to obesity and metabolic syndrome indicate an urgent need to identify and implement interventions
- …