171 research outputs found

    The effect of subduction on the sulphur, carbon and redox budget of lithospheric mantle

    Get PDF
    Subduction of hydrated lithospheric mantle introduces H O, ferric iron, oxidized carbon and sulphur to the subduction zone system. The fate of these components is poorly known, but is intimately linked to the global geochemical cycles of iron, carbon and sulphur, the genesis of arc-related ore deposits, the temporal evolution of mantle redox state and subduction-related earthquakes and magmatism. thermocalc is used to provide first-order constraints on the effect of subduction zone metamorphism on metamorphic redistribution of iron, carbon, sulphur and water in ultramafic rocks via construction of P−T and T-X(O) pseudosections with open system calculation of the effect of fluid loss. The calculations replicate observed mineral assemblages in high-P to low-T ultramafic rocks at P−T conditions consistent with those suggested by other workers. The results are consistent with open system fluid loss without significant fluid infiltration. Water loss is complete by 850 C, the corresponding depth of fluid loss being consistent with that inferred for earthquakes in subducting slabs. Losses of carbon and sulphur are relatively minor, at around 5 GPa, below the depths of the source zone for arc volcanoes.Oxygen activity for rocks in closed systems that evolve with a fixed redox budget is calculated to change from ΔFMQ −1 at 350 C to over ΔFMQ +3 at 850 C. This result emphasizes the need to consider redox budget as well as oxygen activity when the results of experiments performed at fixed oxygen activity relative to some buffer are interpreted in the context of natural systems. In open systems, devolatilization is calculated to increase the redox budget and oxygen activity of the residue via loss of methane and H S at the brucite-out and serpentine-out reactions respectively. No fluid-induced mechanism for oxidation of sub-arc mantle by transfer of redox budget from hydrated ultramafic lithologies to the overlying sub-arc mantle was identified, although further thermodynamic data on fluid species such as S are required to confirm this

    Preschool Children’s Memory for Word Forms Remains Stable Over Several Days, but Gradually Decreases after 6 Months

    Get PDF
    Research on word learning has focused on children’s ability to identify a target object when given the word form after a minimal number of exposures to novel word-object pairings. However, relatively little research has focused on children’s ability to retrieve the word form when given the target object. The exceptions involve asking children to recall and produce forms, and children typically perform near floor on these measures. In the current study, 3- to 5-year-old children were administered a novel test of word form that allowed for recognition memory and manual responses. Specifically, when asked to label a previously trained object, children were given three forms to choose from: the target, a minimally different form, and a maximally different form. Children demonstrated memory for word forms at three post-training delays: 10 mins (short-term), 2–3 days (long-term), and 6 months to 1 year (very long-term). However, children performed worse at the very long-term delay than the other time points, and the length of the very long-term delay was negatively related to performance. When in error, children were no more likely to select the minimally different form than the maximally different form at all time points. Overall, these results suggest that children remember word forms that are linked to objects over extended post-training intervals, but that their memory for the forms gradually decreases over time without further exposures. Furthermore, memory traces for word forms do not become less phonologically specific over time; rather children either identify the correct form, or they perform at chance

    Intrinsic optical biomarkers associated with the invasive potential of tumor cells in engineered tissue models

    Get PDF
    This report assesses the ability of intrinsic two-photon excited fluorescence (TPEF) and second harmonic generation (SHG) imaging to characterize features associated with the motility and invasive potential of epithelial tumor cells engineered in tissues. Distinct patterns of organization are found both within the cells and the matrix that depend on the adhesive properties of the cells as well as factors attributed to adjacent fibroblasts. TPEF images are analyzed using automated algorithms that reveal unique features in subcellular organization and cell spacing that correlate with the invasive potential. We expect that such features have significant diagnostic potential for basic in vitro studies that aim to improve our understanding of cancer development or response to treatments, and, ultimately can be applied in prognostic evaluation

    Proterozoic sedimentary exhalative (SEDEX) deposits and links to evolving global ocean chemistry

    Get PDF
    Sedimentary exhalative (SEDEX) Zn-Pb-sulfi de mineralization fi rst occurred on a large scale during the late Paleoproterozoic. Metal sulfi des in most Proterozoic deposits have yielded broad ranges of predominantly positive d34S values traditionally attributed to bacterial sulfate reduction. Heavy isotopic signatures are often ascribed to fractionation within closed or partly closed local reservoirs isolated from the global ocean by rifting before, during, and after the formation of Rodinia. Although such conditions likely played a central role, we argue here that the fi rst appearance of signifi cant SEDEX mineralization during the Proterozoic and the isotopic properties of those deposits are also strongly coupled to temporal evolution of the amount of sulfate in seawater. The ubiquity of 34S-enriched sulfi de in ore bodies and shales and the widespread stratigraphic patterns of rapid d34S variability expressed in both sulfate and sulfi de data are among the principal evidence for global seawater sulfate that was increasing during the Proterozoic but remained substantially lower than today. Because sulfate is produced mostly through weathering of the continents in the presence of oxygen, low Proterozoic concentrations imply that levels of atmospheric oxygen fell between the abundances of the Phanerozoic and the defi ciencies of the Archean, which are also indicated by the Precambrian sulfur isotope record. Given the limited availability of atmospheric oxygen, deep-water anoxia may have persisted well into the Proterozoic in the presence of a growing sulfate reservoir, which promoted prevalent euxinia. Collectively, these observations suggest that the mid-Proterozoic maximum in SEDEX mineralization and the absence of Archean deposits refl ect a critical threshold in the accumulation of oceanic sulfate and thus sulfi de within anoxic bottom waters and pore fluids-conditions that favored both the production and preservation of sulfi de mineralization at or just below the seafl oor. Consistent with these evolving global conditions, the appearance of voluminous SEDEX mineralization ca. 1800 Ma coincides generally with the disappearance of banded iron formations-marking the transition from an early iron-dominated ocean to one more strongly influenced by sulfi de availability. In further agreement with this conceptual model, Proterozoic SEDEX deposits in northern Australian formed from relatively oxidized fl uids that required reduced conditions at the site of mineralization. By contrast, the generally more oxygenated Phanerozoic ocean may have only locally and intermittently favored the formation and preservation of exhalative mineralization, and most Phanerozoic deposits formed from reduced fluids that carried some sulfide to the site of ore precipitation

    Somatic cell type specific gene transfer reveals a tumor-promoting function for p21Waf1/Cip1

    Get PDF
    How proteins participate in tumorigenesis can be obscured by their multifunctional nature. For example, depending on the cellular context, the cdk inhibitors can affect cell proliferation, cell motility, apoptosis, receptor tyrosine kinase signaling, and transcription. Thus, to determine how a protein contributes to tumorigenesis, we need to evaluate which functions are required in the developing tumor. Here we demonstrate that the RCAS/TvA system, originally developed to introduce oncogenes into somatic cells of mice, can be adapted to allow us to define the contribution that different functional domains make to tumor development. Studying the development of growth-factor-induced oligodendroglioma, we identified a critical role for the Cy elements in p21, and we showed that cyclin D1T286A, which accumulates in the nucleus of p21-deficient cells and binds to cdk4, could bypass the requirement for p21 during tumor development. These genetic results suggest that p21 acts through the cyclin D1–cdk4 complex to support tumor growth, and establish the utility of using a somatic cell modeling system for defining the contribution proteins make to tumor development

    Громадянське суспільство як категорія етнополітології

    Get PDF
    У статті «громадянське суспільство» розглядається як категорія етнополітології, акцентується увага на визначальному впливі громадянського суспільства на формування сучасної нації.В статье «гражданское общество» рассматривается как категория этнополитологии, акцентируется внимание на определяющем влиянии гражданского общества на формирование современной нации.In the article «civil society» is considered as a category ethnopolitology, emphasized the decisive influence of civil society on the formation of modern nation

    Dioctahedral mixed K-Na-micas and paragonite in diagenetic to low-temperature metamorphic terrains: bulk rock chemical, thermodynamic and textural constraints

    Get PDF
    Abstract Metamorphic mineral assemblages in low-temperature metaclastic rocks often contain paragonite and/or its precursor metastable phase (mixed K-Na-white mica). Relationships between the bulk rock major element chemistries and the formation of paragonite at seven localities from Central and SE-Europe were studied, comparing the bulk chemical characteristics with mineral assemblage, mineral chemical and metamorphic petrological data. Considerable overlaps between the projection fields of bulk chemistries of the Pg-free and Pg-bearing metaclastic rocks indicate significant differences between the actual (as analyzed) and effective bulk chemical compositions. Where inherited, clastic, inert phases/constituents were excluded, it was found that a decrease in Na/(Na+Al*) and in K/(K+Al*) ratios of rocks favors the formation and occurrence of Pg and its precursor phases (Al* denotes here the atomic quantity of aluminum in feldspars, white micas and “pure” hydrous or anhydrous aluminosilicates). In contrast to earlier suggestions, enrichment in Na and/or an increase in Na/K ratio by themselves do not lead to formation of paragonite. Bulk rock chemistries favorable to formation of paragonite and its precursor phases are characterized by enrichment in Al and depletion in Na, K, Ca (and also, Mg and Fe2+). Such bulk rock chemistries are characteristic of chemically “mature” (strongly weathered) source rocks of the pelites and may also be formed by synand post-sedimentary magmatism-related hydrothermal (leaching) activity. What part of the whole rock is active in determining the effective bulk chemistry was investigated by textural examination of diagenetic and anchizone-grade samples. It is hypothesized that although solid phases act as local sources and sinks, transport of elements such as Na through the grain boundaries have much larger communication distances. Sodium-rich white micas nucleate heterogeneously using existing phyllosilicates as templates and are distributed widely on the thin section scale. The results of modeling by THERMOCALC suggest that paragonite preferably forms at higher pressures in low-T metapelites. The stability fields of Pg-bearing assemblages increase, the Pg-in reaction line is shifted towards lower pressures, while the stability field of the Chl-Ms-Ab-Qtz assemblage decreases and is shifted towards higher temperatures with increasing Al* content and decreasing Na/(Na+Al*) and K/(K+Al*) ratios

    Plasticity of cell migration: a multiscale tuning model

    Get PDF
    Cell migration underlies tissue formation, maintenance, and regeneration as well as pathological conditions such as cancer invasion. Structural and molecular determinants of both tissue environment and cell behavior define whether cells migrate individually (through amoeboid or mesenchymal modes) or collectively. Using a multiparameter tuning model, we describe how dimension, density, stiffness, and orientation of the extracellular matrix together with cell determinants—including cell–cell and cell–matrix adhesion, cytoskeletal polarity and stiffness, and pericellular proteolysis—interdependently control migration mode and efficiency. Motile cells integrate variable inputs to adjust interactions among themselves and with the matrix to dictate the migration mode. The tuning model provides a matrix of parameters that control cell movement as an adaptive and interconvertible process with relevance to different physiological and pathological contexts

    Quantitative Proteomics Reveals Myosin and Actin as Promising Saliva Biomarkers for Distinguishing Pre-Malignant and Malignant Oral Lesions

    Get PDF
    Oral cancer survival rates increase significantly when it is detected and treated early. Unfortunately, clinicians now lack tests which easily and reliably distinguish pre-malignant oral lesions from those already transitioned to malignancy. A test for proteins, ones found in non-invasively-collected whole saliva and whose abundances distinguish these lesion types, would meet this critical need.To discover such proteins, in a first-of-its-kind study we used advanced mass spectrometry-based quantitative proteomics analysis of the pooled soluble fraction of whole saliva from four subjects with pre-malignant lesions and four with malignant lesions. We prioritized candidate biomarkers via bioinformatics and validated selected proteins by western blotting. Bioinformatic analysis of differentially abundant proteins and initial western blotting revealed increased abundance of myosin and actin in patients with malignant lesions. We validated those results by additional western blotting of individual whole saliva samples from twelve other subjects with pre-malignant oral lesions and twelve with malignant oral lesions. Sensitivity/specificity values for distinguishing between different lesion types were 100%/75% (p = 0.002) for actin, and 67%/83% (p<0.00001) for myosin in soluble saliva. Exfoliated epithelial cells from subjects' saliva also showed increased myosin and actin abundance in those with malignant lesions, linking our observations in soluble saliva to abundance differences between pre-malignant and malignant cells.Salivary actin and myosin abundances distinguish oral lesion types with sensitivity and specificity rivaling other non-invasive oral cancer tests. Our findings provide a promising starting point for the development of non-invasive and inexpensive salivary tests to reliably detect oral cancer early
    corecore