8 research outputs found

    Geochemical evidence for the link between sulfate reduction, sulfide oxidation and phosphate accumulation in a late cretaceous upwelling system

    Get PDF
    Background: On Late Cretaceous Tethyan upwelling sediments from the Mishash/Ghareb Formation (Negev, Israel),bulk geochemical and biomarker analyses were performed to explain the high proportion of phosphates in thelower part and of organic matter (OM) preserved in upper parts of the studied section. The profile is composed ofthree facies types; the underlying Phosphate Member (PM), the Oil Shale Member (OSM) and the overlying MarlMember (MM). Results: Total organic carbon (TOC) contents are highly variable over the whole profile reaching from 0.6% in theMM, to 24.5% in the OSM. Total iron (TFe) varies from 0.1% in the PM to 3.3% in the OSM. Total sulfur (TS) rangesbetween 0.1% in the MM and 3.4% in the OSM, resulting in a high C/S ratio of 6.5 in the OSM section. A meanproportion of 11.5% total phosphorus (TP) in the PM changed abruptly with the facies to a mean value of only 0.9% in the OSM and the MM. The TOC/TOCOR_{OR} ratios argue for a high bacterial sulfate reduction activity and in addition, results from fatty acidanalyses indicate that the activity of sulfide-oxidizing activity of bacteria was high during deposition of the PM,while decreasing during the deposition of the OSM. Conclusions: The upwelling conditions effected a high primary productivity and consequently the presence of abundant OM. This, in combination with high sulfate availability in the sediments of the PM resulted in a higher sulfide production due to the activity of sulfate-reducing bacteria. Iron availability was a limiting factor during the deposition of the whole section, affecting the incorporation of S into OM. This resulted in the preservation of a substantial part of OM against microbial degradation due to naturally-occurring sulfurization processes expressed by the high C/S ratio of 6.5 in the OSM. Further, the abundant sulfide in the pore water supported the growth of sulfide-oxidizing bacteria promoting the deposition of P, which amounted to as much as 15% in the PM. These conditions changed drastically from the PM to the OSM, resulting in a significant reduction of the apatite precipitation and a high concentration of reactive S species reacting with the OM

    Facies Distribution, Sequence Stratigraphy, Chemostratigraphy, and Diagenesis of the Middle-Late Triassic Al Aziziyah Formation, Jifarah Basin, NW Libya

    Get PDF
    This study presents the depositional facies, sequence stratigraphy, chemostratigraphy and diagenetic evolution of the Middle-Late Triassic Al Aziziyah Formation, Jifarah Basin northwest Libya. Eight measured sections were sampled and analyzed. High-resolution stable carbon isotope data were integrated with an outcrop-based sequence stratigraphic framework, to build the stratigraphic correlation, and to provide better age control of the Al Aziziyah Formation using thin section petrography, cathodoluminescence (CL) microscopy, stable isotope, and trace element analyses. The Al Aziziyah Formation was deposited on a gently sloping carbonate ramp and consists of gray limestone, dolomite, and dolomitic limestone interbedded with rare shale. The Al Aziziyah Formation is predominantly a 2nd-order sequence (5-20 m.y. duration), with shallow marine sandstone and peritidal carbonate facies restricted to southernmost sections. Seven 3rd-order sequences were identified (S1-S7) within the type section. North of the Ghryan Dome section are three mainly subtidal sequences (S8-S10) that do not correlate to the south. Shallowing upward trends define 4th-5th order parasequences, but correlating these parasequences between sections is difficult due to unconformities. The carbon isotope correlation between the Ghryan Dome and Kaf Bates sections indicates five units of δ13C depletion and enrichment (sequences 3-7). The enrichment of δ13C values in certain intervals most likely reflects local withdrawal of 12C from the ocean due to increased productivity, as indicated by the deposition of organic-rich sediment, and/or whole rock sediment composed of calcite admixed with aragonite. The depletion of δ13C is clearly associated with exposure surfaces and with shallow carbonate facies. Heavier δ18O values are related to evaporetic enrichment of 18O, whereas depletion of δ18O is related to diagenesis due to freshwater input. Al Aziziyah Formation diagenetic events indicate: 1) initial meteoric and shallow burial; 2) three types of dolomite D1, D2 and D3 were most likely formed by microbial, seepage reflux and burial processes, respectively; and 3) diagenetic cements cannot be related to the arid, mega-monsoonal climate of the Triassic and most likely formed subsequently in a humid, meteoric setting

    The climatic and environmental conditions during deposition of phosphorites and oil shales in the Late Cretaceous upwelling system of the Negev/Israel

    No full text
    The Late Cretaceous is known to be mostly affected by warm periods interrupted temporarily by a number of cooling events. The reconstruction of the paleoclimatic conditions during a period of high concentration of CO2 in the atmosphere is of great importance for the creation of future climate models. We applied the recently developed method reconstructing the SST from the TEX86 (TetraEther indeX of tetraethers consisting of 86 carbon atoms). The sample material used for the present study was obtained from the tropical Late Cretaceous southern Tethys upwelling system (Negev/Israel), lasting from the Late Santonian to the Early Maastrichtian (~ 85 to 68 Ma). On the core samples from the Shefela basin, representing the outer belt of the upwelling system and the outcrop profile from the open mine Mishor Rotem (Efe Syncline), representing the inner belt, various bulk geochemical and biomarker studies were performed in this thesis. Derived from TEX86 data, a significant long-term SST cooling trend from 36.0 to 29.3 °C is recognized during the Late Santonian and the Early Campanian in the southern Tethys margin. This is consistent with the opening and deepening of the Equatorial Atlantic Gateway (EAG) and the intrusion of cooler deep water from the southern Atlantic Ocean influencing the global SSTs and also the Tethys Ocean. Furthermore, the cooler near shore SST usually found in modern upwelling systems could be verified in case of the ancient upwelling system investigated in the present study. The calculated mean SST in the inner belt (27.7 °C) represented in the Efe Syncline was 1.5 °C cooler in comparison to the more seaward located outer belt (Shefela basin). Moreover, geochemical and biomarker analyses were used to identify both the accumulation of high amounts of phosphate in the PM and good preservation of organic matter (OM) in the lower part of the OSM section. Total organic carbon (TOC) contents are highly variable over the whole profile reaching from 0.6 % in the MM, to 24.5 % in the OSM. Total iron (TFe) varies from 0.1 % in the PM to 3.3 % in the OSM and total sulfur (TS) varies between 0.1 % in the MM and 3.4 % in the OSM. Different correlations of TS, TOC and TFe were used to identify the conditions during the deposition of the different facies types. Natural sulfurization was found to play a key role in the preservation of the OM particularly in the lower part of the OSM. Samples from the OSM and the PM were deposited under dysoxic to anoxic conditions and iron limitation lasted during the deposition of the OSM and the PM, which effected the incorporation of sulfur into OM. Phosphorus is highly accumulated in the sediments of the PM with a mean proportion of 11.5 % total phosphorus (TP), which is drastically reduced to a mean value of 0.9 % in the OSM and the MM. From the correlation of the bulk geochemical parameters TOC/TOCOR ratio and TP a major contribution of sulfate reducing bacteria to the phosphate deposition is concluded. This interrelation has previously been investigated in recent coastal upwelling systems off Peru, Chile, California and Namibia. This was further supported by the analysis of branched and monounsaturated fatty acids indicating the occurrence of sulfate reducing and sulfide oxidizing bacteria during the deposition. According to the results from the analysis of n-alkanes and C27- to C29-steranes up to 95 % of the OM was of marine origin. Organic sulfur compounds (OSC) were a major compound class in the aromatic hydrocarbon fraction and n-Alkyl and isoprenoid thiophenes were the most abundant, with highest amounts found for 2-methyl-5-tridecyl-thiophene (28 µg/g TOC). The relatively high abundance of ββ-C35 hopanoid thiophenes and epithiosteranes is equivalent to an incorporation of sulfur during the early stages of diagenesis. Moreover, the geochemical parameters δ13Corg, δ15Norg, C/N and the pristane/phytane (Pr/Ph) ratio, were studied for reconstruction of seafloor and water column depositional environments. The high C/N ratio along with relatively low values of δ15Norg (4 ‰ to 6 ‰) and δ13Corg (-29 ‰ to -28 ‰) are consistent with a significant preferential loss of nitrogen-rich organic compounds during diagenesis. Oxygen-depleted conditions lasted during the deposition of the PM and the bottom of the OSM, reflected by the low Pr/Ph ratio of 0.11–0.7. In the upper part of the OSM and the MM the conditions changed from anoxic to dysoxic or oxic conditions. This environmental trend is consistent with co-occurring foraminiferal assemblages in the studied succession and implies that the benthic species in the Negev sequence were adapted to persistent minimum oxygen conditions by performing complete denitrification as recently found in many modern benthic foraminifera. Furthermore, the anammox process could have influenced the nitrogen composition of the sediments. In this anaerobically process nitrite and ammonia are converted to molecular nitrogen

    Evidence for specific adaptations of fossil benthic foraminifera to anoxic-dysoxic environments

    Get PDF
    It has generally been argued that the majority 8 of fossil benthic foraminifera, the most common proxy for paleo bottom oceanic conditions, could not tolerate anoxia. Here we present evidence that fossil foraminifera were able to successfully colonize anoxic–dysoxic bottom waters, by using adaptations similar to those found in living species. Our study is based on a multi-proxy micropaleontological and geochemical investigation of the Upper Cretaceous sediments from the Levant upwelling regime. A shift from buliminid to diverse trochospiral dominated assemblages was recorded in an interval with a distinct anoxic geochemical signature coinciding with a regional change in lithology. This change was triggered by an alteration in the type of primary producers from diatoms to calcareous nannoplankton, possibly causing modifications in benthic foraminiferal morphological and physiological adaptations to life in the absence of oxygen. Our data show that massive blooms of triserial (buliminid) benthic foraminifera with distinct apertural and test morphologies during the Campanian were enabled by their ability to sequester diatom chloroplasts and associate with bacteria, in a similar manner as their modern analogs. Diverse trochospiral forms existed during the Maastrichtian by using nitrate instead of oxygen for their respiratory pathways in a denitrifying environment. Species belonging to the Stilostomellidae and Nodosariidae families might have been affected by the change in food type arriving to the seafloor after the phytoplankton turnover at the Campanian/Maastrichtian boundary, in a similar manner as their mid-Pleistocene descendants prior to their extinction. This study promotes the need for a re-evaluation of the current models used for interpreting paleoceanographic data and demonstrates that the identification of adaptations and mechanisms involved in promoting sustained life under anoxic-dysoxic conditions should become a standard in faunal paleoceanographic studies.status: publishe

    Chronostratigraphy of the Upper Cretaceous high productivity sequence of the southern Tethys, Israel

    No full text
    The Levantine high productivity sequence is a product of an extensive upwelling system that operated in the Late Cretaceous along the SE Tethyan margin. This system resulted in the deposition of a unique sequence of carbonate, chert, porcellanite, phosphorite and organic-rich (oil shale) sediments in a series of basins located proximally and marginally to the upwelling center. This study presents a detailed and updated chronostratigraphic framework for the high productivity sequence in Israel based on eight sections covering a NeS cross section of w90 km. The Shefela Basin (central Israel) represents the thickest and the most complete penetrated stratigraphic interval of the oil shale deposits in Israel. The newly drilled Aderet borehole in the Shefela Basin provided a continuous core record coupled with high quality geophysical well logs and was used in this study as a ‘type-section’ for the detailed chronostratigraphic scheme of the high productivity sequence. A total of 23 datum levels were recognized using planktic and benthic foraminiferal biostratigraphy, lithostratigraphy and gamma ray well log markers. The varying lithostratigraphic units (containing chert, phosphate, porcellanite and organic-rich carbonates) of the more proximal basins of southern Israel (Negev) were individually correlated to specific horizons within the monotonous organic-rich carbonates of the distal setting of the Shefela Basin. The first occurrence of the Late Cretaceous organic-rich carbonates in Israel is documented in the Negev during the late Coniacian, within the upper Dicarinella concavata Zone, and corresponds chronologically to the upper part of the lower Menuha Formation. The regional unconformity around the Santonian/Campanian boundary was found to be less substantial at the distal localities in comparison to the proximal ones. The distinct appearance of the ‘Mishash Tongue’ chert in the Shefela was correlated to the massive Chert Member (Mishash Formation) in the Negev, and assigned to the middle Campanian. Deposition of the overlying phosphate series spans from the lower Contusotruncana plummerae to the base of the Pseudoguembelina palpebra Zones (78.3e71.7 Ma) and co-occurs in both proximal and deeper distal areas, although in a much lesser magnitude in the latter. The top of the phosphatic unit is marked by a regional unconformity. The oil shale deposits in southern Israel coincide with the 100 m richest TOC interval (average of 15.2 wt.% TOC) in the Shefela. The diminishing phase of organic-rich deposition occurred in a diachronous step-wise manner across Israel, from the top of the P. palpebra Zone to the upper part of the Abathomphalus mayaroensis Zone in southern and central Israel, respectively. This indicates that the full duration of the high productivity sequence in Israel spans approximately 19 myr.publisher: Elsevier articletitle: Chronostratigraphy of the Upper Cretaceous high productivity sequence of the southern Tethys, Israel journaltitle: Cretaceous Research articlelink: http://dx.doi.org/10.1016/j.cretres.2014.04.006 content_type: article copyright: Copyright © 2014 Elsevier Ltd. All rights reserved.status: publishe

    Geochemical evidence for the link between sulfate reduction, sulfide oxidation and phosphate accumulation in a Late Cretaceous upwelling system

    Get PDF
    Background: On Late Cretaceous Tethyan upwelling sediments from the Mishash/Ghareb Formation (Negev, Israel),bulk geochemical and biomarker analyses were performed to explain the high proportion of phosphates in thelower part and of organic matter (OM) preserved in upper parts of the studied section. The profile is composed ofthree facies types; the underlying Phosphate Member (PM), the Oil Shale Member (OSM) and the overlying MarlMember (MM). Results: Total organic carbon (TOC) contents are highly variable over the whole profile reaching from 0.6% in theMM, to 24.5% in the OSM. Total iron (TFe) varies from 0.1% in the PM to 3.3% in the OSM. Total sulfur (TS) rangesbetween 0.1% in the MM and 3.4% in the OSM, resulting in a high C/S ratio of 6.5 in the OSM section. A meanproportion of 11.5% total phosphorus (TP) in the PM changed abruptly with the facies to a mean value of only 0.9% in the OSM and the MM. The TOC/TOCOR_{OR} ratios argue for a high bacterial sulfate reduction activity and in addition, results from fatty acidanalyses indicate that the activity of sulfide-oxidizing activity of bacteria was high during deposition of the PM,while decreasing during the deposition of the OSM. Conclusions: The upwelling conditions effected a high primary productivity and consequently the presence of abundant OM. This, in combination with high sulfate availability in the sediments of the PM resulted in a higher sulfide production due to the activity of sulfate-reducing bacteria. Iron availability was a limiting factor during the deposition of the whole section, affecting the incorporation of S into OM. This resulted in the preservation of a substantial part of OM against microbial degradation due to naturally-occurring sulfurization processes expressed by the high C/S ratio of 6.5 in the OSM. Further, the abundant sulfide in the pore water supported the growth of sulfide-oxidizing bacteria promoting the deposition of P, which amounted to as much as 15% in the PM. These conditions changed drastically from the PM to the OSM, resulting in a significant reduction of the apatite precipitation and a high concentration of reactive S species reacting with the OM

    Cretaceous sea-surface temperature evolution: Constraints from TEX 86 and planktonic foraminiferal oxygen isotopes

    No full text
    corecore