160 research outputs found

    4-ethyphenol detection in wine by fullerene modified screen-printed carbon electrodes

    Get PDF
    This work shows the potential of modified screen-printed carbon electrodes (SPCEs) for sensitive and selective detection of 4-ethylphenol in wine. Gold nanoparticles (AuNPs) and fullerene C60 (C60), modified sensors have been compared. pH of the supporting electrolyte, deposition time and working temperature have been optimized considering their influence in the voltammetric pulse response of 4-ethylphenol. Under the optimal conditions of measurement, the developed activated C60/SPCE (AC60/SPCE) shows the best performance, with a detection capability of 400 μg/L and 700 μg/L, when using deposition times of 14 min and 6 min, respectively (α = β = 0.05). The reproducibility of the developed sensor resulted better when a deposition time of 6 min was used (5.4 %, n = 3). The influence of different interferents on the analytical response has been studied, as well as their application in the determination of 4-ethylphenol in different wine samples.Authors would like to acknowledge funding obtained by Junta de Castilla y León (BU018G19) and Agencia Estatal de Investigación (PID2020-117095RB-I00)

    Electrochemical devices for cholesterol detection

    Get PDF
    Cholesterol can be considered as a biomarker of illnesses such as heart and coronary artery diseases or arteriosclerosis. Therefore, the fast determination of its concentration in blood is interesting as a means of achieving an early diagnosis of these unhealthy conditions. Electrochemical sensors and biosensors have become a potential tool for selective and sensitive detection of this biomolecule, combining the analytical advantages of electrochemical techniques with the selective recognition features of modified electrodes. This review covers the different approaches carried out in the development of electrochemical sensors for cholesterol, differentiating between enzymatic biosensors and non-enzymatic systems, highlighting lab-on-a-chip devices. A description of the different modification procedures of the working electrode has been included and the role of the different functional materials used has been discussed

    A Disposable Alkaline Phosphatase-Based Biosensor for Vanadium Chronoamperometric Determination

    Get PDF
    A chronoamperometric method for vanadium ion determination, based on the inhibition of the enzyme alkaline phosphatase, is reported. Screen-printed carbon electrodes modified with gold nanoparticles were used as transducers for the immobilization of the enzyme. The enzymatic activity over 4-nitrophenyl phosphate sodium salt is affected by vanadium ions, which results in a decrease in the chronoamperometric current registered. The developed method has a detection limit of 0.39 ± 0.06 µM, a repeatability of 7.7% (n = 4) and a reproducibility of 8% (n = 3). A study of the possible interferences shows that the presence of Mo(VI), Cr(III), Ca(II) and W(VI), may affect vanadium determination at concentration higher than 1.0 mM. The method was successfully applied to the determination of vanadium in spiked tap waterResearch Vicerrectory of Costa Rica University (Project 804-B0-058) and Spanish Ministry of Science and Innovation (TEC-2009/12029). This work was supported by the Spanish Ministry of Science and Innovation (MICINN) 410 and the European Regional Development Fund (FEDER) (INNPACTO SERIBIO 2011-411 2014) and TEC2009-12029, as well as through Junta de Castilla y León (BU212A12-2)

    Determination of aluminium using different techniques based on the Al(III)-morin complex

    Get PDF
    Three different methods for the determination of Al(III) in aqueous samples were compared. The different described procedures were based on the formation of the Al(III)-morin complex. UV–Vis spectrophotometry, spectrofluorimetry and differential pulse adsorptive stripping voltammetry (DPAdSV) techniques were compared under optimized experimental conditions. The DPAdSV method showed a better performance for the analysis of Al(III) in terms of capability of detection (70 nM) in comparison with the value obtained for UV–Vis spectrophotometric (300 nM) and spectrofluorimetic (110 nM) techniques. Thus, DPAdSV method was selected for the analysis of aluminium in river, tap and bottled water samples under the following optimized experimental conditions: pH = 4.4, deposition potential = +243 mV, deposition time = 210 s, giving satisfactory results

    Effect of Nanoparticles on Modified Screen Printed Inhibition Superoxide Dismutase Electrodes for Aluminum

    Get PDF
    A novel amperometric biosensor for the determination of Al(III) based on the inhibition of the enzyme superoxide dismutase has been developed. The oxidation signal of epinephrine substrate was affected by the presence of Al(III) ions leading to a decrease in its amperometric current. The immobilization of the enzyme was performed with glutaraldehyde on screen-printed carbon electrodes modifiedwith tetrathiofulvalene (TTF) and different types ofnanoparticles. Nanoparticles of gold, platinum, rhodium and palladium were deposited on screen printed carbon electrodes by means of two electrochemical procedures. Nanoparticles were characterized trough scanning electronic microscopy, X-rays fluorescence, and atomic force microscopy. Palladium nanoparticles showed lower atomic force microscopy parameters and higher slope of aluminum calibration curves and were selected to perform sensor validation. The developed biosensor has a detection limit of 2.0 0.2 Mfor Al(III), with a reproducibility of 7.9% (n = 5). Recovery of standard reference material spiked to buffer solution was 103.8% with a relative standard deviation of 4.8% (n = 5). Recovery of tap water spiked with the standard reference material was 100.5 with a relative standard deviation of 3.4% (n = 3). The study of interfering ions has also been carried out.Vice-presidency for Research at the University of Costa Rica (Project 804-B5-117), Ministerio de Ciencia e Innovación (MICINN Spain) and Fondo Europeo de Desarrollo Regional (FEDER) (Projects :TEC-TEC20013-40561-P and MUSSEL RTC-2015-4077-2)

    A Chronoamperometric Screen Printed Carbon Biosensor Based on Alkaline Phosphatase Inhibition for W(VI) Determination in Water, Using 2-Phospho-L-Ascorbic Acid Trisodium Salt as a Substrate

    Get PDF
    This paper presents a chronoamperometric method to determine tungsten in water using screen-printed carbon electrodes modified with gold nanoparticles and cross linked alkaline phosphatase immobilized in the working electrode. Enzymatic activity over 2-phospho-L-ascorbic acid trisodium salt, used as substrate, was affected by tungsten ions, which resulted in a decrease of chronoamperometric current, when a potential of 200 mV was applied on 10 mM of substrate in a Tris HCl buffer pH 8.00 and 0.36 M of KCl. Calibration curves for the electrochemical method validation, give a reproducibility of 5.2% (n = 3), a repeatability of 9.4% (n = 3) and a detection limit of 0.29 ± 0.01 μM. Enriched tap water, purified laboratory water and bottled drinking water, with a certified tungsten reference solution traceable to NIST, gave a recovery of 97.1%, 99.1% and 99.1% respectively (n = 4 in each case) and a dynamic range from 0.6 to 30 μM. This study was performed by means of a Lineweaver–Burk plot, showing a mixed kinetic inhibition.Vicerrectorìa de Investigación de la Universidad de Costa Rica (Project 804-B2-297), via Junta de Castilla y León (BU212A12-2), Ministerio de Ciencia e Innovación (MICINN) (TEC2009-12029) and MICINN and Fondo Europeo de Desarrollo Regional (FEDER) (INNPACTO SERIBIO 2011-2014)

    Horseradish and soybean peroxidases: comparable tools for alternative niches?

    Get PDF
    Horseradish and soybean peroxidases (HRP and SBP, respectively) are useful biotechnological tools. HRP is often termed the classical plant heme peroxidase and although it has been studied for decades, our understanding has deepened since its cloning and subsequent expression, enabling numerous mutational and protein engineering studies. SBP, however, has been neglected until recently, despite offering a real alternative to HRP: SBP actually outperforms HRP in terms of stability and is now used in numerous biotechnological applications, including biosensors. Review of both is timely. This article summarizes and discusses the main insights into the structure and mechanism of HRP, with special emphasis on HRP mutagenesis, and outlines its use in a variety of applications. It also reviews the current knowledge and applications to date of SBP, particularly biosensors. The final paragraphs speculate on the future of plant heme-based peroxidases, with probable trends outlined and explored

    Molecularly imprinted polypyrrole based electrochemical sensor for selective determination of 4-ethylphenol

    Get PDF
    This work describes the development of an electrochemical sensor based on a molecularly imprinted polymer (MIP) for sensitive and selective determination of 4-ethylphenol in wine. The sensor has been built by means of the electrosynthesis of the MIP on a glassy carbon electrode surface using cyclic voltammetry. The electropolymerization has been performed in the presence of 4-ethylphenol and pyrrole as template molecule and functional monomer, respectively. The influence of the molar ratios of template molecules to functional pyrrole monomers and the time needed to remove the template have been optimized taking into account the differential pulse voltammetric response of 4-ethylphenol. Under the optimal experimental conditions the developed MIP/GCE sensor shows good capability of detection (0.2 μM, α = β = 0.05) and reproducibility (3.0%) in the concentration range from 0.2 to 34.8 μM. The influence of possible interfering species in the analytical response has been studied and the sensor has successfully been applied to the determination of 4-ethylphenol in different wine samples.Junta de Castilla y León (BU018G19

    Review of micro/nanotechnologies for microbial biosensors

    Get PDF
    A microbial biosensor is an analytical device with a biologically integrated transducer that generates a measurable signal indicating the analyte concentration. This method is ideally suited for the analysis of extracellular chemicals and the environment, and for metabolic sensory regulation. Although microbial biosensors show promise for application in various detection fields, some limitations still remain such as poor selectivity, low sensitivity, and impractical portability. To overcome such limitations, microbial biosensors have been integrated with many recently developed micro/nanotechnologies and applied to a wide range of detection purposes. This review article discusses micro/nanotechnologies that have been integrated with microbial biosensors and summarizes recent advances and the applications achieved through such novel integration. Future perspectives on the combination of micro/nanotechnologies and microbial biosensors will be discussed, and the necessary developments and improvements will be strategically deliberated.clos
    corecore