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Abstract: This paper presents a chronoamperometric method to determine tungsten in water 

using screen-printed carbon electrodes modified with gold nanoparticles and cross linked 

alkaline phosphatase immobilized in the working electrode. Enzymatic activity over  

2-phospho-L-ascorbic acid trisodium salt, used as substrate, was affected by tungsten ions, 

which resulted in a decrease of chronoamperometric current, when a potential of  

200 mV was applied on 10 mM of substrate in a Tris HCl buffer pH 8.00 and 0.36 M of KCl. 

Calibration curves for the electrochemical method validation, give a reproducibility of 5.2% 

(n = 3), a repeatability of 9.4% (n = 3) and a detection limit of 0.29 ± 0.01 µM. Enriched tap 

water, purified laboratory water and bottled drinking water, with a certified tungsten 

reference solution traceable to NIST, gave a recovery of 97.1%, 99.1% and 99.1% 

respectively (n = 4 in each case) and a dynamic range from 0.6 to 30 µM. This study was 

performed by means of a Lineweaver–Burk plot, showing a mixed kinetic inhibition.  
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1. Introduction  

Tungsten is a metal which occurs naturally in soils and sediments, usually in small concentrations 

ranging between 0.2 and 2.4 mg·kg−1 in the lithosphere [1–3]. This metal is also present in oceanic 

waters in trace amounts, for instance its contents for the Northern Atlantic and Pacific Oceans reported 

in the literature are 100 ng·L−1 and 8 ng·L−1 respectively [1]. In aqueous media, WO4
2− is the dominant 

species, occurring as monomer in a pH range of 6.9 to 9.3, while polytungstate species form at lower pH 

and higher W concentration. Ions such as NH4
+ shift the pH at which polycondensation occurs, thus 

polytungstate species in ammoniacal solution are stable at pH values where normally only 

monotungstate ions would exist. On the other hand, W has been found with a concentration between 0.27 

and 742 µM in groundwater in Carson Desert (Nevada, USA) [4].  

Natural processes for tungsten isolation include weathering of W-rich rocks and soils, dissolutions, 

hydrothermal and volcanic activity, atmospheric precipitation (wet and dry) and excretion of 

metabolites. Tungsten occurs in the oxidation states III, IV, V and VI, however, oxidation state VI 

represents the most stable of tungsten species. It has tensile strength at high temperature, a density of 

19.1 g·cm−1 and the highest melting/boiling points among elements. These properties make tungsten 

suitable for a wide variety of uses. Tungsten-based products have been in use in a wide range of 

applications, stretching from daily household supplies to highly specialized components of modern 

science and technology [1].  

For a long time, tungsten was considered an insoluble metal that did not exhibit serious toxicological 

or environmental effects, and it was placed among less toxic elements. Nevertheless tungsten effects on 

environmental systems have not been investigated extensively in regards to its ecotoxicological effects, 

so published data are fragmentary. In fact, anthropogenic sources include a variety of industrial, 

commercial and military activities along with non-sustainable disposal practices of municipal, 

agricultural and industrial wastes. However, in spite of its extensive uses, biological and biochemical 

effects of tungsten and tungsten compounds are not well known [1,5]. 

For instance, it has been reported recently that tungsten as a trace element is toxic to people and 

animals, such as 5 μg·kg−1 of tungsten led to the death of animal embryos [2,6,7]. Other studies have 

shown that dissolution of metallic tungsten particles may cause adverse environmental effects such as 

soil acidification as well as direct and indirect toxic effects in plants, soil microorganisms and 

invertebrates. Therefore, it has been found necessary to re-evaluate the environmental regulations of 

tungsten, to confirm the “nontoxic” and “environmentally inert” of the metal [6,8]. 

There are many techniques to analyse tungsten in environmental samples; mostly spectrophotometric 

methods such as Atomic Absorption and ICP-OES, as well as voltammetric and polarographic methods 

have been used [2,3,9–11]. The application of enzyme biosensors for determining toxic compounds is a 

dynamic promising research trend, because the associated analytical systems are simple, rapid and 

selective for amperometric, potentiometric or conductimetric techniques. They function by combining 
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an electrochemical process with the activity of an immobilized enzyme. The selected enzyme must 

provide selectivity through its biological affinity for a particular substrate, usually of biological origin. 

These type of biosensors constitute one of the most widespread, numerous and successfully 

commercialized devices in biomolecular electronics since their inception, which implied the 

development of a novel field in analytical biotechnology [12,13]. 

The enzyme immobilization on the electrode surface is a critical step that defines an enzyme 

electrode’s effectiveness. Different chemical, biochemical and physical factors such as the chemical 

cross linking with glutaraldehyde, other functional antigen–antibody agent interactions, as well as the 

magnetic interactions, entrapment or encapsulation within polymers and the formation of paste 

materials, are generally used to immobilize the enzyme on the electrode surface [9,13]. 

Alkaline phosphatase has been used to analyse some heavy metals, such as vanadium and 

molybdenum through these techniques. Metals such as vanadium and tungsten exert inhibitory effects on 

the enzyme alkaline phosphatase (ALP). For instance, in 1974, Van Etten [14] demonstrated the 

influence of vanadate, molybdate and tungstate on phosphohydrolases such as acid phosphatases which 

are relatively nonspecific enzymes that catalyze the hydrolysis of several alkyl and aryl phosphate esters 

at pH values between 4 and 6. Our research group recently reported promising results using two different 

biosensors with this enzyme for vanadium detection at trace levels in water [15,16], studying 

modification of electrode surfaces with gold nanoparticles in order to provide a micro-environment 

similar to native systems of redox proteins and allowing these molecules more freedom in orientation, 

thereby reducing the insulating effect of the protein shell towards direct electron transfer through gold 

nanocrystal conducting tunnels [17–19].  

Thereby, we report in this paper the development of a new methodology to determine tungsten in 

water at low µmol·L−1 concentrations using a biosensor with a disposable screen printed carbon 

electrode (SPCE) modified with gold nanoparticles, using the enzyme alkaline phosphatase immobilized 

over the working electrode and 2-phospho-L-ascorbic acid trisodium salt as substrate.  

2. Experimental Section  

2.1. Chemical Reagents  

Several inks were used in the fabrication of the screen printed carbon electrodes (SPCEs),  

namely Electrodag PF-407 A (carbon ink), Electrodag 6037 SS (silver/silver chloride ink) and 

Electrodag 452 SS (dielectric ink), all supplied by Acheson Colloiden (Scheemda, The Netherlands). 

Analytical grade chemicals with no further purification were used. All solutions were prepared in 

ultrapure water, conductivity of 0.05 μS/cm (Gen-Pure TKA, Niederelbert, Germany). 

Hydrogen tetrachloroaurate (III) trihydrate (HAuCl4), alkaline phosphatase (ALP), bovine  

serum albumine (BSA) and glutaraldehyde (GA) were obtained from Sigma Chemical Co. (St. Louis, 

MO, USA).  

2-Phospho-L-ascorbic acid trisodium salt was acquired from Sigma Aldrich (Steinheim, Germany). 

Ammonium tungstate CertiPUR traceable to SRM from NIST (Merck, Darmstadt, Germany) was used as 

stock solution of tungsten. Tungsten metal 99.99% purity, 2% v/v HNO3 certified value 1000 ± 4 mg·L−1 

(CRM traceable to NIST confirmed against SRM 3163, High-Purity Standards, Charleston, SC, USA) 
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was used to spike samples for recovery. 28 mM Tris (hydroxymethyl) aminomethane (Aldrich Chemical 

Co., Buchs, Switzerland) buffer was used together with 19 mM of MgCl2 (Merck) and 0.36 M total Cl− 

(Merck) as supporting electrolyte. HCl 0.1 mM (Merck) was used to adjust the pH value. 

2.2. Apparatus 

Screen Printed Carbon Electrodes (SPCEs) were produced on a DEK 248 printing machine (DEK, 

Weymouth, UK) using polyester screens with appropriate stencil designs. Electrochemical 

measurements were made with an Autolab 128N electrochemical system with GPES software (Echo 

Chemie, Utrecht, The Netherlands). The pH measurements were performed using a Mettler-Toledo 

pHmeter S47-K (Columbus, OH, USA). 

2.3. Software 

Data analysis was processed with a Statgraphics Plus (StatPoint Technologies, Inc. Warrenton, VA, 

USA, 1994–1999) software package for the experimental design process. 

2.4. Manufacturing of Screen Printed Carbon Electrodes  

Home-made SPCEs were used in the determination of tungsten. For the construction of the SPCEs, 

successive layers of different inks were printed onto a polyester strip substrate following the printing 

procedure described in previous works [19].  

2.5. Preparation of Modified SCPEs Biosensor 

The working electrode was electrochemically modified by gold nanoparticles (AuNPs), using a  

0.1 mM solution of HAuCl4 in 0.5 mM H2SO4. The deposition was performed by applying a potential of 

+0.18 V (vs. Ag/AgCl SPE) during 15 s under stirring conditions [17,19–21]. The biologically sensitive 

layer of the biosensor was formed by cross-linking the enzyme alkaline phosphatase on the surface of the 

AuNPs-modified SPCEs, by dropping 10 µL of a 2:1:2 mixture of 0.6% of enzyme solution, 1.75% 

(w/v) of BSA solution and 2.5% (w/v) of GA solution onto the surface of a screen-printed working 

electrode. Volume and concentration of ALP, GA and BSA were optimized to obtain the maximum 

analytical response for the inhibition of the enzyme with W(VI) [15,22]. Finally, the mixture was left to 

react at 4 °C during one hour and the ALP-AuNPs-SPCEs were stored at 4 °C. Under these storage 

conditions the developed biosensor showed good stability for at least one week.  

2.6. Optimization of Experimental Conditions 

In order to obtain a sensitive analytical signal, a 23 central composite design was carried out considering 

three important factors: pH, Cl− and substrate concentrations [23]. A group of 17 experiments were 

performed at different pH, Cl− and substrate concentrations according to the design, and the best 

conditions obtained from an estimated surface. Another experiment was carried out to optimize the 

working potential. Considering that higher potentials are not selective and lead to more oxidized species, 

we tried to apply a potential as low as possible, varying it from 1.0 V to 0.1 V.  
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2.7. Tungsten Chronoamperometric Determination Procedure 

The ALP/SPCEs biosensors were placed in the electrochemical cell containing 5 mL of Tris-HCl 

buffer solution, pH 8. An adequate potential was applied and, once a steady-state current was set,  

a defined amount of 2-phospho-L-ascorbic acid trisodium salt 10 mM stock solutions was added to the 

measuring cell. A large anodic current was observed due to the addition of 2-phospho-L-ascorbic acid 

trisodium salt. Then, once a plateau corresponding to the steady-state response was reached again,  

50 µL aliquots of the tungsten stock solution were added consecutively. The addition of each aliquot 

resulted in a current decrease proportional to the amount of the metal added. Enzyme electrodes were 

conditioned in a buffer solution for 5 min between each calibration setting. 

2.8. Validation  

Several calibration curves with the same and different electrodes were used to evaluate the figures of 

merit. To establish the accuracy, reliability, and reproducibility of the collected data, all tests were 

recorded in triplicate and only average values are reported. Blank tests were run in parallel. All the lab 

ware used in the study was previously soaked in Alconox, rinsed with distilled water, and finally with 

ultrapure water from TKA and allowed to dry at room temperature.  

3. Results and Discussion  

To develop the alkaline phosphatase biosensor, initially two substrates were used,  

p-nitrophenylphosphate, and 2-phospho-L-ascorbic acid trisodium salt, because in previous papers we 

reported its use to determine V(V) and As(V) [15,24]. Based on different experiments results, we 

decided to work with 2-phospho-L-ascorbic acid trisodium salt, which had been tested only with acid 

phosphatase, but not with the alkaline enzyme. To the best of authors’ knowledge, the determination of 

tungsten using biosensors based on the inhibitory effect of this metal over ALP have not been described 

up to now. The alkaline phosphatase biosensor is based on the following reaction:  

𝑎𝑙𝑘𝑎𝑙𝑖𝑛𝑒 𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑎𝑠𝑒 

𝑅 − 𝑃𝑂3
2− + 𝐻2𝑂 ↔ 𝑅 − 𝐻 + 𝐻𝑃𝑂4

2− 
 

where R-PO3
2− is the organic phosphate substrate and HPO4

2− the monohydrophosphate. When  

p-nitrophenyl phosphate is used as substrate, the product RH is p-nitrophenol and when  

2-phospho-L-ascorbic acid is used as substrate, the product R-H is L-ascorbic acid. Therefore, in the 

presence of alkaline phosphatase, the reaction induces to a change in the pH and in conductivity [25]. 

It is well-known that chronoamperometric measurements are influenced by different factors such as 

pH of the medium, the applied potential, the substrate concentration, and also ionic strength among 

others, depending on the studied system. Based on the optimization process to obtain the best current 

signals, the optimized parameters are summarized in Table 1, which were used in tungsten determination: 

supporting electrolyte pH 8.00, working potential of +0.20 V vs. Ag/AgCl SPE, a substrate 

concentration of 0.32 mM and Cl− concentration of 0.36 M. Easily quantifiable chronoamperometric 

signals are registered under these optimized conditions for tungsten. 
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Table 1. Values corresponding to high (+) and low (–) levels for each factor, used to 

optimize experimental conditions for tungsten detection. 

 
Low Level High Level Optimum 

pH of supporting electrolyte 6.30 9.70 8.00 

Substrate concentration 0.036 mM 0.38 mM 0.32 mM 

Ionic strength 0.10 M 0.50 M 0.36 M 

Working potential +0.1 V vs. Ag/AgCl +1.0 V vs. Ag/AgCl 0.20 V 

Table 2 show higher calibration curve slopes at lower applied potentials, thus, 0.20 V was the best 

potential for our experiments. To analyse the signal with the immobilized enzyme, control experiments 

were carried out under the optimum conditions using bare SPCEs and AuNPs-SPCEs but without the 

enzyme. No analytical signal was obtained; hence the inhibition response registered after the addition of 

the substrate is only related to tungsten concentration. Consequently, tungsten can be determined by its 

inhibitory effect on the response of ALP to 2-phospho-L-ascorbic acid trisodium salt, by calibration 

curves as it is shown in Table 2. 

Table 2. Slope variation with applied potential, from different calibration curves for W(VI). 

Applied Potential/V Slope, A/M 

0.20 0.2531 

0.30 0.2122 

0.40 0.0913 

0.50 0.0437 

Figure 1 represents a chronoamperogram obtained for alkaline phosphatase biosensor, a base line 

represents the current of the buffer signal, the first current step is due to substrate addition, and the rest,  

1 to 12, resembles consecutive additions of aliquots of W(VI) standard. The inset figure is the calibration 

curve of this chronoamperogram, experimental conditions are indicated in the graph. 

 

Figure 1. Chronoamperogram registered using an ALP-based biosensor under the optimum 

conditions (applied potential, +0.20 V vs. Ag/AgCl SPE; supporting electrolyte pH 8.00 

(Tris HCl buffer, 0.36 M total Cl−) and 2-phospho-L-ascorbic acid trisodium salt 0.32 mM, 

in the W(VI) concentration range from 3.0 µM to 30.0 µM. Inset figure, a calibration curve 

for twelve aliquot W(VI) additions under optimum conditions.  
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3.1. Inhibitory Effect of W(VI) Over the ALP Enzyme 

The inhibitory effect of W in the enzymatic activity, when using 2-phospho-L-ascorbic acid trisodium 

salt as substrate, was studied by means of kinetic parameters of the Lineweaver-Burk plot. The y-intercept 

of this graph is equivalent to the inverse of Vmax, the x-intercept of the graph represents −1/Km (Km is the 

Michaelis–Menten constant and Vmax is the maximum reaction velocity). It also gives a quick, visual 

impression of the different forms of enzyme inhibition, both in absence and presence of tungsten.  

This study was performed under different ionic strength, according to values of Km and slopes, 

suggesting a mixed inhibition [26,27]. In fact, the inhibitory effect of tungsten on the 

ALP/2-phospho-L-ascorbic acid trisodium salt reaction was confirmed through the higher affinity of 

ALP for the substrate in the absence of this metal. 

As it can be seen from Table 3 and Figure 2, slopes and Km apparent increases directly with the 

concentration of W(VI) as inhibitor. In addition, Table 4 shows that Km apparent increases directly with 

ionic strength, so we decided to use an ionic strength of 0.36 M KCl, because the change in current when 

adding the substrate was higher at this concentration.  

Table 3. Michaelis-Menten apparent constant values at different W(VI) concentration.  

W(VI) µg·L−1 Km 

0 8.14 × 10−4 

291 1.78 × 10−3 

740 1.96 × 10−3 

 

Figure 2. Lineweaver-Burk double reciprocal plot in presence and absence of W(VI) as inhibitor.  

Table 4. Michaelis-Menten apparent constant values at different KCl concentration. 

Conditions Km 

0.10 M KCl without W(VI) 4.32 × 10−4 

0.10 M KCl with W(VI) 7.49 × 10−4 

0.25 M KCl with W(VI) 1.67 × 10−3 

0.50 M KCl with W(VI) 3.54 × 10−3 

  

http://en.wikipedia.org/wiki/Y-intercept
http://en.wikipedia.org/wiki/Root_of_a_function
http://en.wikipedia.org/wiki/Michaelis%E2%80%93Menten_constant
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3.2. Characterization of ALP Biosensor Performance 

To characterize an analytical method, it is important to establish its precision in terms of 

reproducibility and repeatability. The first one was calculated taking into account calibration curves 

registered using different biosensors (inter-biosensors), and the second one with one single biosensor 

(intra-biosensor). In this way, several calibration curves were performed in the range of concentration 

from 0.6 µM to 10 µM at optimum conditions of the experimental variables. Both figures of merit were 

calculated by the relative standard deviation (RSD) of the slopes from different calibration curves. The 

reproducibility associated to slopes of these calibration curves in terms of RSD was 4.2% (n = 3). 

Determination of the repeatability was performed similarly using a single ALP based SPCE, which kept 

83% of its initial sensibility after the third calibration curve, obtaining a value of 9.4% (n = 3) in terms of 

RSD. Table 5 shows the validated parameters of the calibration curves registered using different 

biosensors and one biosensor respectively. 

Table 5. Precision parameters obtained through ordinary least square (OLS) regression for 

W(VI) using one or different ALP modified SPCEs under optimum conditions on Table 1. 

Reproducibility Repeatability 

Electrode 
Slope 

R2 
Electrode 3 

R2 
A/M Slope A/M 

1 0.0629 0.9974 0.0609 0.9902 

2 0.0568 0.9966 0.0537 0.9932 

3 0.0609 0.9906 0.0507 0.9930 

Media 0.0595  0.0551 
 

Std. Dev. 0.0025 
 

0.0052 
 

RSD% 4.2 
 

9.4 
 

The detection of tungsten through the inhibition of ALP/2-PLAs reaction was determined (calibration 

range from 0.60 µM to 10.0 µM). In this way, the limit of detection based on the standard deviation 

(3Sy/x/m) in triplicate of the calibration curve was 0.29 ± 0.01 µM, and the limit of quantification was 

0.58 ± 0.02 µM. The performance of the developed procedure was checked by its accuracy and 

reliability. The accuracy of the proposed method was evaluated by means of the analysis of a tungsten 

certified sample (High Purity Standards SRM, 1000 ± 4 mg·L−1 of W(VI) ), and then the biosensor was 

used to analyse enriched tap water with the same SRM, recovering 991 ± 68% (Table 5). Finally, the 

developed procedure was applied to the determination of tungsten in spiked tap water samples  

(1.03 µM), by standard addition methodology with High-Purity Standards traceable to NIST-SRM 3163 

by triplicate. The mean concentration of W(VI) was (1.01 ± 0.03) µM (n = 3, α = 0.05 and RSD 2.9%, 

with an average recovery of (97.1 ± 2.9)%. Other samples enriched were purified laboratory water from 

a TKA System and bottled drinking water, were also enriched with the SRM standard, obtained 

recoveries of 99.1% ± 2.9% and 99.1% ± 5.2% respectively (n = 4). 

3.3. Interferences  

We also studied the effect of different cations at four different concentrations (1.0 µM, 10 µM,  

0.1 mM and 1 mM) on the inhibition current of ALP under biosensor-optimized conditions. Their effect 
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was analysed by measuring the inhibition current after consecutive additions of standard solutions of 

each metal. Figure 3 shows that at µM level, W(VI) produces the highest inhibition current compared to 

other cations at the same concentration. Nevertheless, Figure 4 presents the inhibition of possible 

interferences could be present in natural waters such as Ca(II), Al(III), Mg(II) and Fe(III), but also other 

metals as Se(IV), As(V) and Sn(II). These elements and Fe(III) are major interferences at concentrations 

higher than 1.0 µM, however if they are present in water at higher concentrations than W(VI), they must 

be considered in the analysis of tungsten. That is a limiting aspect of this method but we can say that in 

some cases, many potential interfering cations tend not to exist in many real samples, only Fe(III) should 

be a problem. In cases where there could be treated with a sample previously precipitant, for example in 

a basic medium, while other cations are as hydroxides, the W would be as a tungstate. That is to use 

chemical means of precipitation and complexation to eliminate or decrease the concentration of such 

interferences. We can say that in view of the good results obtained in spiked real water samples, these 

interferences does not seem to be a problem. 

 

Figure 3. Percentage of inhibition current from several cations at 10−6 M, for ALP biosensor 

Tris HCl buffer pH 8.0, 0.36 M KCl; 0.20 V; 0.32 mM; 2-P-L-Asc as a substrate.  

 

Figure 4. Percentage of inhibition current from several cations at different concentrations, for 

ALP biosensor, Tris HCl buffer pH 8.0, 0.36 M KCl, 0.20 V, 0.32 mM 2-P-L-Asc as a substrate.  
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4. Conclusions  

The use of ALP based biosensors using AuNPs/SPCEs with 2-PLAsc allows the selective 

chronoamperometric determination of tungsten. This developed biosensor offers feasibility of use and 

rapid preparation, low cost and good performance. The figures of merit of the biosensor are adequate to 

determine tungsten, with a low limit of detection, linear range between 0.6 and 10 µM, and repeatability 

and reproducibility lower than 10%. There are few interferences at a low concentration of 1.0 µM, 

nevertheless metals such as Se(IV), As(V), Sn(II), Al(III), and Fe(III) at other concentrations must be 

taken into consideration in the analysis of tungsten. The effect of tungsten in the ALP/2-PLASc reaction 

results in a mixed inhibition, which allows the quantitation of tungsten in tap water. The developed 

procedure shows a limit of detection of 0.29 ± 0.01 µM, and quantitation limit of 0.58 ± 0.02 µM. The 

reproducibility and repeatability values of RSD for the slopes of several calibrations are lower than 10%.  

The proposed method can be applicable to different water samples. 
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