40 research outputs found

    Processing and Properties of Bar-Shaped Single-Seeded and Multi-Seeded YBCO Bulk Superconductors by a Top-Seeded Melt Growth Technique

    Get PDF
    © 2016 The Author(s)The fabrication of (RE)-Ba-Cu-O bulk superconductors, where RE is a rare-earth element such as Y, Gd and Sm, is both time consuming and expensive due to the complexity of the melt process and the slow growth rate of large, single grains. In this study, different approaches to the fabrication of bar-shaped, bulk YBCO superconductors are investigated and compared using single- and multiple-seeding techniques via top-seeded melt growth (TSMG). Both the microstructural and superconducting properties of the bulk samples are investigated, including trapped field, critical current density, critical temperature and levitation force. The results of this study indicate that, in general, the superconducting properties of YBCO fabricated by a single-seeded process are significantly better than those of samples fabricated by a four-seeded process for non-bridge seeds. The differences between the samples are less pronounced in the levitation force measurements, however. In this paper, we attempt to explain the reasons for the similarities and differences observed between bulk samples fabricated by the different single- and multi-seeded processes.This work was supported by the King Abdulaziz City for Science and Technology (KACST)

    Investigating the Willingness to Pay for a Contributory National Health Insurance Scheme in Saudi Arabia:A Cross-sectional Stated Preference Approach

    Get PDF
    Background: The Saudi Healthcare System is universal, financed entirely from government revenue principally derived from oil, and is ‘free at the point of delivery’ (non-contributory). However, this system is unlikely to be sustainable in the medium to long term. This study investigates the feasibility and acceptability of healthcare financing reform by examining households’ willingness to pay (WTP) for a contributory national health insurance scheme. Methods: Using the contingent valuation method, a pre-tested interviewer-administered questionnaire was used to collect data from 1187 heads of household in Jeddah province over a 5-month period. Multi-stage sampling was employed to select the study sample. Using a double-bounded dichotomous choice with the follow-up elicitation method, respondents were asked to state their WTP for a hypothetical contributory national health insurance scheme. Tobit regression analysis was used to examine the factors associated with WTP and assess the construct validity of elicited WTP. Results: Over two-thirds (69.6%) indicated that they were willing to participate in and pay for a contributory national health insurance scheme. The mean WTP was 50 Saudi Riyal (US$13.33) per household member per month. Tobit regression analysis showed that household size, satisfaction with the quality of public healthcare services, perceptions about financing healthcare, education and income were the main determinants of WTP. Conclusions: This study demonstrates a theoretically valid WTP for a contributory national health insurance scheme by Saudi people. The research shows that willingness to participate in and pay for a contributory national health insurance scheme depends on participant characteristics. Identifying and understanding the main influencing factors associated with WTP are important to help facilitate establishing and implementing the national health insurance scheme. The results could assist policy-makers to develop and set insurance premiums, thus providing an additional source of healthcare financing

    Past, present, and future of global health financing: a review of development assistance, government, out-of-pocket, and other private spending on health for 195 countries, 1995–2050

    Get PDF
    © 2019 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license Background: Comprehensive and comparable estimates of health spending in each country are a key input for health policy and planning, and are necessary to support the achievement of national and international health goals. Previous studies have tracked past and projected future health spending until 2040 and shown that, with economic development, countries tend to spend more on health per capita, with a decreasing share of spending from development assistance and out-of-pocket sources. We aimed to characterise the past, present, and predicted future of global health spending, with an emphasis on equity in spending across countries. Methods: We estimated domestic health spending for 195 countries and territories from 1995 to 2016, split into three categories—government, out-of-pocket, and prepaid private health spending—and estimated development assistance for health (DAH) from 1990 to 2018. We estimated future scenarios of health spending using an ensemble of linear mixed-effects models with time series specifications to project domestic health spending from 2017 through 2050 and DAH from 2019 through 2050. Data were extracted from a broad set of sources tracking health spending and revenue, and were standardised and converted to inflation-adjusted 2018 US dollars. Incomplete or low-quality data were modelled and uncertainty was estimated, leading to a complete data series of total, government, prepaid private, and out-of-pocket health spending, and DAH. Estimates are reported in 2018 US dollars, 2018 purchasing-power parity-adjusted dollars, and as a percentage of gross domestic product. We used demographic decomposition methods to assess a set of factors associated with changes in government health spending between 1995 and 2016 and to examine evidence to support the theory of the health financing transition. We projected two alternative future scenarios based on higher government health spending to assess the potential ability of governments to generate more resources for health. Findings: Between 1995 and 2016, health spending grew at a rate of 4·00% (95% uncertainty interval 3·89–4·12) annually, although it grew slower in per capita terms (2·72% [2·61–2·84]) and increased by less than 1percapitaoverthisperiodin22of195countries.Thehighestannualgrowthratesinpercapitahealthspendingwereobservedinupper−middle−incomecountries(5⋅551 per capita over this period in 22 of 195 countries. The highest annual growth rates in per capita health spending were observed in upper-middle-income countries (5·55% [5·18–5·95]), mainly due to growth in government health spending, and in lower-middle-income countries (3·71% [3·10–4·34]), mainly from DAH. Health spending globally reached 8·0 trillion (7·8–8·1) in 2016 (comprising 8·6% [8·4–8·7] of the global economy and 10⋅3trillion[10⋅1–10⋅6]inpurchasing−powerparity−adjusteddollars),withapercapitaspendingofUS10·3 trillion [10·1–10·6] in purchasing-power parity-adjusted dollars), with a per capita spending of US5252 (5184–5319) in high-income countries, 491(461–524)inupper−middle−incomecountries,491 (461–524) in upper-middle-income countries, 81 (74–89) in lower-middle-income countries, and 40(38–43)inlow−incomecountries.In2016,0⋅440 (38–43) in low-income countries. In 2016, 0·4% (0·3–0·4) of health spending globally was in low-income countries, despite these countries comprising 10·0% of the global population. In 2018, the largest proportion of DAH targeted HIV/AIDS (9·5 billion, 24·3% of total DAH), although spending on other infectious diseases (excluding tuberculosis and malaria) grew fastest from 2010 to 2018 (6·27% per year). The leading sources of DAH were the USA and private philanthropy (excluding corporate donations and the Bill & Melinda Gates Foundation). For the first time, we included estimates of China's contribution to DAH (644⋅7millionin2018).Globally,healthspendingisprojectedtoincreaseto644·7 million in 2018). Globally, health spending is projected to increase to 15·0 trillion (14·0–16·0) by 2050 (reaching 9·4% [7·6–11·3] of the global economy and $21·3 trillion [19·8–23·1] in purchasing-power parity-adjusted dollars), but at a lower growth rate of 1·84% (1·68–2·02) annually, and with continuing disparities in spending between countries. In 2050, we estimate that 0·6% (0·6–0·7) of health spending will occur in currently low-income countries, despite these countries comprising an estimated 15·7% of the global population by 2050. The ratio between per capita health spending in high-income and low-income countries was 130·2 (122·9–136·9) in 2016 and is projected to remain at similar levels in 2050 (125·9 [113·7–138·1]). The decomposition analysis identified governments’ increased prioritisation of the health sector and economic development as the strongest factors associated with increases in government health spending globally. Future government health spending scenarios suggest that, with greater prioritisation of the health sector and increased government spending, health spending per capita could more than double, with greater impacts in countries that currently have the lowest levels of government health spending. Interpretation: Financing for global health has increased steadily over the past two decades and is projected to continue increasing in the future, although at a slower pace of growth and with persistent disparities in per-capita health spending between countries. Out-of-pocket spending is projected to remain substantial outside of high-income countries. Many low-income countries are expected to remain dependent on development assistance, although with greater government spending, larger investments in health are feasible. In the absence of sustained new investments in health, increasing efficiency in health spending is essential to meet global health targets. Funding: Bill & Melinda Gates Foundation

    Past, present, and future of global health financing : a review of development assistance, government, out-of-pocket, and other private spending on health for 195 countries, 1995-2050

    Get PDF
    Background Comprehensive and comparable estimates of health spending in each country are a key input for health policy and planning, and are necessary to support the achievement of national and international health goals. Previous studies have tracked past and projected future health spending until 2040 and shown that, with economic development, countries tend to spend more on health per capita, with a decreasing share of spending from development assistance and out-of-pocket sources. We aimed to characterise the past, present, and predicted future of global health spending, with an emphasis on equity in spending across countries. Methods We estimated domestic health spending for 195 countries and territories from 1995 to 2016, split into three categories-government, out-of-pocket, and prepaid private health spending-and estimated development assistance for health (DAH) from 1990 to 2018. We estimated future scenarios of health spending using an ensemble of linear mixed-effects models with time series specifications to project domestic health spending from 2017 through 2050 and DAH from 2019 through 2050. Data were extracted from a broad set of sources tracking health spending and revenue, and were standardised and converted to inflation-adjusted 2018 US dollars. Incomplete or low-quality data were modelled and uncertainty was estimated, leading to a complete data series of total, government, prepaid private, and out-of-pocket health spending, and DAH. Estimates are reported in 2018 US dollars, 2018 purchasing-power parity-adjusted dollars, and as a percentage of gross domestic product. We used demographic decomposition methods to assess a set of factors associated with changes in government health spending between 1995 and 2016 and to examine evidence to support the theory of the health financing transition. We projected two alternative future scenarios based on higher government health spending to assess the potential ability of governments to generate more resources for health. Findings Between 1995 and 2016, health spending grew at a rate of 4.00% (95% uncertainty interval 3.89-4.12) annually, although it grew slower in per capita terms (2.72% [2.61-2.84]) and increased by less than 1percapitaoverthisperiodin22of195countries.Thehighestannualgrowthratesinpercapitahealthspendingwereobservedinupper−middle−incomecountries(5.55 1 per capita over this period in 22 of 195 countries. The highest annual growth rates in per capita health spending were observed in upper-middle-income countries (5.55% [5.18-5.95]), mainly due to growth in government health spending, and in lower-middle-income countries (3.71% [3.10-4.34]), mainly from DAH. Health spending globally reached 8.0 trillion (7.8-8.1) in 2016 (comprising 8.6% [8.4-8.7] of the global economy and 10.3trillion[10.1−10.6]inpurchasing−powerparity−adjusteddollars),withapercapitaspendingofUS 10.3 trillion [10.1-10.6] in purchasing-power parity-adjusted dollars), with a per capita spending of US 5252 (5184-5319) in high-income countries, 491(461−524)inupper−middle−incomecountries, 491 (461-524) in upper-middle-income countries, 81 (74-89) in lower-middle-income countries, and 40(38−43)inlow−incomecountries.In2016,0.4 40 (38-43) in low-income countries. In 2016, 0.4% (0.3-0.4) of health spending globally was in low-income countries, despite these countries comprising 10.0% of the global population. In 2018, the largest proportion of DAH targeted HIV/AIDS ( 9.5 billion, 24.3% of total DAH), although spending on other infectious diseases (excluding tuberculosis and malaria) grew fastest from 2010 to 2018 (6.27% per year). The leading sources of DAH were the USA and private philanthropy (excluding corporate donations and the Bill & Melinda Gates Foundation). For the first time, we included estimates of China's contribution to DAH (644.7millionin2018).Globally,healthspendingisprojectedtoincreaseto 644.7 million in 2018). Globally, health spending is projected to increase to 15.0 trillion (14.0-16.0) by 2050 (reaching 9.4% [7.6-11.3] of the global economy and $ 21.3 trillion [19.8-23.1] in purchasing-power parity-adjusted dollars), but at a lower growth rate of 1.84% (1.68-2.02) annually, and with continuing disparities in spending between countries. In 2050, we estimate that 0.6% (0.6-0.7) of health spending will occur in currently low-income countries, despite these countries comprising an estimated 15.7% of the global population by 2050. The ratio between per capita health spending in high-income and low-income countries was 130.2 (122.9-136.9) in 2016 and is projected to remain at similar levels in 2050 (125.9 [113.7-138.1]). The decomposition analysis identified governments' increased prioritisation of the health sector and economic development as the strongest factors associated with increases in government health spending globally. Future government health spending scenarios suggest that, with greater prioritisation of the health sector and increased government spending, health spending per capita could more than double, with greater impacts in countries that currently have the lowest levels of government health spending. Interpretation Financing for global health has increased steadily over the past two decades and is projected to continue increasing in the future, although at a slower pace of growth and with persistent disparities in per-capita health spending between countries. Out-of-pocket spending is projected to remain substantial outside of high-income countries. Many low-income countries are expected to remain dependent on development assistance, although with greater government spending, larger investments in health are feasible. In the absence of sustained new investments in health, increasing efficiency in health spending is essential to meet global health targets.Peer reviewe

    Past, present, and future of global health financing: a review of development assistance, government, out-of-pocket, and other private spending on health for 195 countries, 1995–2050

    Get PDF
    Background: Comprehensive and comparable estimates of health spending in each country are a key input for health policy and planning, and are necessary to support the achievement of national and international health goals. Previous studies have tracked past and projected future health spending until 2040 and shown that, with economic development, countries tend to spend more on health per capita, with a decreasing share of spending from development assistance and out-of-pocket sources. We aimed to characterise the past, present, and predicted future of global health spending, with an emphasis on equity in spending across countries. Methods: We estimated domestic health spending for 195 countries and territories from 1995 to 2016, split into three categories—government, out-of-pocket, and prepaid private health spending—and estimated development assistance for health (DAH) from 1990 to 2018. We estimated future scenarios of health spending using an ensemble of linear mixed-effects models with time series specifications to project domestic health spending from 2017 through 2050 and DAH from 2019 through 2050. Data were extracted from a broad set of sources tracking health spending and revenue, and were standardised and converted to inflation-adjusted 2018 US dollars. Incomplete or low-quality data were modelled and uncertainty was estimated, leading to a complete data series of total, government, prepaid private, and out-of-pocket health spending, and DAH. Estimates are reported in 2018 US dollars, 2018 purchasing-power parity-adjusted dollars, and as a percentage of gross domestic product. We used demographic decomposition methods to assess a set of factors associated with changes in government health spending between 1995 and 2016 and to examine evidence to support the theory of the health financing transition. We projected two alternative future scenarios based on higher government health spending to assess the potential ability of governments to generate more resources for health. Findings: Between 1995 and 2016, health spending grew at a rate of 4·00% (95% uncertainty interval 3·89–4·12) annually, although it grew slower in per capita terms (2·72% [2·61–2·84]) and increased by less than 1percapitaoverthisperiodin22of195countries.Thehighestannualgrowthratesinpercapitahealthspendingwereobservedinupper−middle−incomecountries(5⋅55inlower−middle−incomecountries(3⋅711 per capita over this period in 22 of 195 countries. The highest annual growth rates in per capita health spending were observed in upper-middle-income countries (5·55% [5·18–5·95]), mainly due to growth in government health spending, and in lower-middle-income countries (3·71% [3·10–4·34]), mainly from DAH. Health spending globally reached 8·0 trillion (7·8–8·1) in 2016 (comprising 8·6% [8·4–8·7] of the global economy and 10⋅3trillion[10⋅1–10⋅6]inpurchasing−powerparity−adjusteddollars),withapercapitaspendingofUS10·3 trillion [10·1–10·6] in purchasing-power parity-adjusted dollars), with a per capita spending of US5252 (5184–5319) in high-income countries, 491(461–524)inupper−middle−incomecountries,491 (461–524) in upper-middle-income countries, 81 (74–89) in lower-middle-income countries, and 40(38–43)inlow−incomecountries.In2016,0⋅4countries,despitethesecountriescomprising10⋅0DAHtargetedHIV/AIDS(40 (38–43) in low-income countries. In 2016, 0·4% (0·3–0·4) of health spending globally was in low-income countries, despite these countries comprising 10·0% of the global population. In 2018, the largest proportion of DAH targeted HIV/AIDS (9·5 billion, 24·3% of total DAH), although spending on other infectious diseases (excluding tuberculosis and malaria) grew fastest from 2010 to 2018 (6·27% per year). The leading sources of DAH were the USA and private philanthropy (excluding corporate donations and the Bill & Melinda Gates Foundation). For the first time, we included estimates of China’s contribution to DAH (644⋅7millionin2018).Globally,healthspendingisprojectedtoincreaseto644·7 million in 2018). Globally, health spending is projected to increase to 15·0 trillion (14·0–16·0) by 2050 (reaching 9·4% [7·6–11·3] of the global economy and $21·3 trillion [19·8–23·1] in purchasing-power parity-adjusted dollars), but at a lower growth rate of 1·84% (1·68–2·02) annually, and with continuing disparities in spending between countries. In 2050, we estimate that 0·6% (0·6–0·7) of health spending will occur in currently low-income countries, despite these countries comprising an estimated 15·7% of the global population by 2050. The ratio between per capita health spending in high-income and low-income countries was 130·2 (122·9–136·9) in 2016 and is projected to remain at similar levels in 2050 (125·9 [113·7–138·1]). The decomposition analysis identified governments’ increased prioritisation of the health sector and economic development as the strongest factors associated with increases in government health spending globally. Future government health spending scenarios suggest that, with greater prioritisation of the health sector and increased government spending, health spending per capita could more than double, with greater impacts in countries that currently have the lowest levels of government health spending Interpretation: Financing for global health has increased steadily over the past two decades and is projected to continue increasing in the future, although at a slower pace of growth and with persistent disparities in per-capita health spending between countries. Out-of-pocket spending is projected to remain substantial outside of high-income countries. Many low-income countries are expected to remain dependent on development assistance, although with greater government spending, larger investments in health are feasible. In the absence of sustained new investments in health, increasing efficiency in health spending is essential to meet global health targets. Funding: Bill & Melinda Gates Foundatio

    Economic benefits of implementing patient-centered medical home among patients with hypertension

    No full text
    Ziyad S Almalki,1 Abrar A Alotaibi,2 Wejdan S Alzaidi,2 Afnan A Alghamdi,2 Abdulrahman M Bahowirth,3 Noura M Alsalamah4 1Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj, Riyadh, Saudi Arabia; 2Department of Clinical Pharmacy, College of Pharmacy, Taif University, Taif, Mecca, Saudi Arabia; 3Department of Clinical Pharmacy, College of Pharmacy, Umm Al-Qura University, Mecca, Saudi Arabia; 4Department of Clinical Pharmacy, College of Pharmacy, Qassim University, Buraydah, Qassim, Saudi Arabia Introduction: Despite the strong evidence of an association between adoption of the patient-centered medical home (PCMH) and improved clinical outcomes among patients with hypertension, evidence for associations between the PCMH and health care utilization and cost reduction within the general adult population with hypertension is less developed.Objective: This study was designed to examine the effect of PCMH on health service expenditures and utilization in a national sample of the US adult population who were diagnosed with hypertension.Methods: The 2010–2015 Medical Expenditure Panel Survey data were used. The study sample was limited to adults (≥18 years) diagnosed with essential hypertension. We investigated the impact of PCMH on the direct hypertension-related total and on the costs of inpatient stays, prescription medications, outpatient visits, emergency room visits, office-based services, and other medical expenditures by using log-transformed multiple linear regression models and the propensity score method.Results: Of the 18,630 adults identified with hypertension, 19.2% (n=3,583) of them had received PCMH care from 2010 to 2015. After matching, the no PCMH group showed greater mean in all hypertension-related health service costs and utilization. After adjusting for the remaining confounders, the PCMH group showed a significant association with lower total costs, office-based services, number of office-based visits, and outpatient visits compared with the control group.Conclusion: A significant relationship between experiencing PCMH care and a lower total health care expenditure was found in patients with hypertension. Keywords: PCMH, hypertension, health care expenditure, MEP

    Association between type 2 diabetes mellitus and hypothyroidism: a case–control study

    No full text
    Anas Awad Alsolami,1 Khalid Z Alshali,1 Marwan Ahmad Albeshri,1 Shikih Hussain Alhassan,1 Abdalrhman Mohammed Qazli,1 Ahmed Saad Almalki,1 Marwan A Bakarman,2 Abdel Moniem Mukhtar1 1Faculty of Medicine, Department of Family and Community Medicine, King Abdulaziz University, Jeddah, Saudi Arabia; 2Department of Family and Community Medicine, Rabigh Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia Objectives: Type 2 diabetes mellitus (DM-II) is highly prevalent in Saudi Arabia and only few studies have assessed it as a risk factor for hypothyroidism. This study aimed to examine the association between DM-II and hypothyroidism. Subjects and methods: We conducted a hospital-based case–control study. As cases, we included all adults admitted to King Abdulaziz University Hospital (KAUH) with laboratory-confirmed hypothyroidism. As controls, we drew a random sample of patients admitted to the orthopedic clinic at KAUH with laboratory-confirmed absence of hypothyroidism. We extracted data from the medical records regarding age, sex, presence of DM-II, HbA1c, comorbidities, treatment, and complications. We used multivariate logistic regression to identify factors associated with hypothyroidism. Results: We included 121 cases and 121 controls. In comparison to controls, cases were older (P=0.005), had higher prevalence of DM-II (P<0.001), had higher levels of HbA1c (P=0.03), used insulin (P<0.001) and oral hypoglycemic drugs (P<0.001) more often, and suffered more often from hypertension (P<0.001), coronary artery disease (CAD) (P<0.001), stroke (P=0.04), diabetic foot (P<0.001), and nephropathy (P<0.001). According to multivariate regression, the risk of hypothyroidism was significantly increased among patients with DM-II (OR=4.14; 95% CI=20.20–7.80; P<0.001) and CAD (OR=14.15; 95% CI=1.80–111.43; P=0.01). Conclusion: Patients with DM-II were at increased risk of developing hypothyroidism. Adequate management and control of DM-II might reduce the risk of developing hypothyroidism. Further research using a prospective cohort study design is needed to confirm these findings. Key messages: Patients with DM-II had an increased risk of developing hypothyroidism. Keywords: hypothyroidism, diabetes mellitus, comorbidities, complication

    Processing and Properties of Bar-Shaped Single-Seeded and Multi-Seeded YBCO Bulk Superconductors by a Top-Seeded Melt Growth Technique

    No full text
    © 2016 The Author(s)The fabrication of (RE)-Ba-Cu-O bulk superconductors, where RE is a rare-earth element such as Y, Gd and Sm, is both time consuming and expensive due to the complexity of the melt process and the slow growth rate of large, single grains. In this study, different approaches to the fabrication of bar-shaped, bulk YBCO superconductors are investigated and compared using single- and multiple-seeding techniques via top-seeded melt growth (TSMG). Both the microstructural and superconducting properties of the bulk samples are investigated, including trapped field, critical current density, critical temperature and levitation force. The results of this study indicate that, in general, the superconducting properties of YBCO fabricated by a single-seeded process are significantly better than those of samples fabricated by a four-seeded process for non-bridge seeds. The differences between the samples are less pronounced in the levitation force measurements, however. In this paper, we attempt to explain the reasons for the similarities and differences observed between bulk samples fabricated by the different single- and multi-seeded processes

    Technology leadership in Saudi schools

    No full text
    corecore