44 research outputs found

    Exotic lagomorph may influence eagle abundances and breeding spatial aggregations: A field study and meta- analysis on the nearest neighbor distance

    Get PDF
    The introduction of alien species could be changing food source composition, ultimately restructuring demography and spatial distribution of native communities. In Argentine Patagonia, the exotic European hare has one of the highest numbers recorded worldwide and is now a widely consumed prey for many predators. We examine the potential relationship between abundance of this relatively new prey and the abundance and breeding spacing of one of its main consumers, the Black-chested Buzzard-Eagle (Geranoaetus melanoleucus). First we analyze the abundance of individuals of a raptor guild in relation to hare abundance through a correspondence analysis. We then estimated the Nearest Neighbor Distance (NND) of the Black-chested Buzzard-eagle abundances in the two areas with high hare abundances. Finally, we performed a metaregression between the NND and the body masses of Accipitridae raptors, to evaluate if Black-chested Buzzard-eagle NND deviates from the expected according to their mass. We found that eagle abundance was highly associated with hare abundance, more than with any other raptor species in the study area. Their NND deviates from the value expected, which was significantly lower than expected for a raptor species of this size in two areas with high hare abundance. Our results support the hypothesis that high local abundance of prey leads to a reduction of the breeding spacing of its main predator, which could potentially alter other interspecific interactions, and thus the entire community.Fil: Barbar, Facundo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Ignazi, Gonzalo Oscar. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; ArgentinaFil: Hiraldo, Fernando. Consejo Superior de Investigaciones Científicas. Estación Biológica de Doñana; EspañaFil: Lambertucci, Sergio Agustin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Patagonia Norte. Instituto de Investigaciones en Biodiversidad y Medioambiente. Universidad Nacional del Comahue. Centro Regional Universidad Bariloche. Instituto de Investigaciones en Biodiversidad y Medioambiente; Argentin

    The spatial scale of competition from recruits on an older cohort in Atlantic salmon

    Get PDF
    Competitive effects of younger cohorts on older ones are frequently assumed to be negligible in species where older, larger individuals dominate in pairwise behavioural interactions. Here, we provide field estimates of such competition by recruits on an older age class in Atlantic salmon (Salmo salar), a species where observational studies have documented strong body size advantages which should favour older individuals in direct interactions. By creating realistic levels of spatial variation in the density of underyearling (YOY) recruits over a 1-km stretch of a stream, and obtaining accurate measurements of individual growth rates of overyearlings (parr) from capture–mark–recapture data on a fine spatial scale, we demonstrate that high YOY density can substantially decrease parr growth. Models integrating multiple spatial scales indicated that parr were influenced by YOY density within 16 m. The preferred model suggested parr daily mass increase to be reduced by 39% when increasing YOY density from 0.0 to 1.0 m−2, which is well within the range of naturally occurring densities. Reduced juvenile growth rates will in general be expected to reduce juvenile survival (via increased length of exposure to freshwater mortality) and increase generation times (via increased age at seaward migrations). Thus, increased recruitment can significantly affect the performance of older cohorts, with important implications for population dynamics. Our results highlight that, even for the wide range of organisms that rely on defendable resources, the direction of competition among age classes cannot be assumed a priori or be inferred from behavioural observations alone

    Predicting the consequences of species loss using size-structured biodiversity approaches.

    Get PDF
    Understanding the consequences of species loss in complex ecological communities is one of the great challenges in current biodiversity research. For a long time, this topic has been addressed by traditional biodiversity experiments. Most of these approaches treat species as trait-free, taxonomic units characterizing communities only by species number without accounting for species traits. However, extinctions do not occur at random as there is a clear correlation between extinction risk and species traits. In this review, we assume that large species will be most threatened by extinction and use novel allometric and size-spectrum concepts that include body mass as a primary species trait at the levels of populations and individuals, respectively, to re-assess three classic debates on the relationships between biodiversity and (i) food-web structural complexity, (ii) community dynamic stability, and (iii) ecosystem functioning. Contrasting current expectations, size-structured approaches suggest that the loss of large species, that typically exploit most resource species, may lead to future food webs that are less interwoven and more structured by chains of interactions and compartments. The disruption of natural body-mass distributions maintaining food-web stability may trigger avalanches of secondary extinctions and strong trophic cascades with expected knock-on effects on the functionality of the ecosystems. Therefore, we argue that it is crucial to take into account body size as a species trait when analysing the consequences of biodiversity loss for natural ecosystems. Applying size-structured approaches provides an integrative ecological concept that enables a better understanding of each species' unique role across communities and the causes and consequences of biodiversity loss
    corecore