441 research outputs found

    Shorting the Climate: Fossil Fuel Finance Report Card 2016

    Get PDF
    This seventh annual report card on energy financing evaluates top global private sector banks based on their financing for the fossil fuel industry. For 2016, the report has been expanded to high-risk subsectors of the oil and gas industry. It also analyzes patterns of private bank financing for coal, oil, and gas projects that have been financially disastrous and inflicted severe damage on communities, ecosystems, and the climate. The report identifies pervasive risk management failures across the North American and European banking sector on fossil fuel financing and calls for a fundamental realignment of bank energy financing to end support for fossil fuel projects and companies that are incompatible with climate stabilization.In the past three years, the North American and European commercial and investment banking sector has engaged in fossil fuel financing practices that are deeply at odds with the global climate agreement reached at COP 21 last December. The Paris Climate Agreement's target of limiting warming to 1.5°C (or, at most, 2°C) above pre-industrial levels will require a rapid decarbonization of the global energy system. Distressingly, levels of fossil fuel financing by major North American and European banks between 2013 and 2015 are incompatible with these climate stabilization targets:Coal mining - As leaders of climate-vulnerable states called for a global moratorium on new coal mines, top banks financed 42.39billionforcompaniesactiveincoalmining,ledbyDeutscheBankwith42.39 billion for companies active in coal mining, led by Deutsche Bank with 6.73 billion.Coal power - In spite of a recent study concluding that the current pipeline of planned coal power plants would put the 2°C climate target out of reach by the end of 2017, these banks financed 154billionfortopoperatorsofcoalpowerplants,ledbyCitigroupwith154 billion for top operators of coal power plants, led by Citigroup with 24.06 billion.Extreme oil (Arctic, tar sands, and ultra-deep offshore) - Future development of most of these high-cost, highrisk oil reserves is incompatible with even the 2°C target, but banks financed 307billionforthetopownersoftheworldsuntapped"extremeoil"reserves,ledbyJPMorganChasewith307 billion for the top owners of the world's untapped "extreme oil" reserves, led by JPMorgan Chase with 37.77 billion.Liquefied Natural Gas (LNG) export - Banks financed 283billion,ledbyJPMorganChasewith283 billion, led by JPMorgan Chase with 30.58 billion, for companies involved with LNG export terminals in North America, which have enormous carbon footprints and are stranded assets in the making based on a 2°C climate scenario.Under pressure from global civil society, several U.S. and European banks have announced restrictions on financing for coal since last year. However, most of these policies fall well short of the necessary full phase-out of financing for coal mining and coal power production; as the report's grades for extreme oil and LNG export finance indicate, banks continue to finance these sectors on a nearly unrestricted basis. Banks also continue to fall distressingly short of their human rights obligations according to the United Nations Guiding Principles on Business and Human Rights, leaving banks complicit in human rights abuses by several of their corporate clients in the fossil fuel industry

    Dataset of RNA-Seq transcriptome of the fetal liver at day 83 of gestation associated with periconceptual maternal nutrition in beef heifers

    Get PDF
    Herein, we present a dataset based on the RNA-Seq analysis of liver tissue from bovine female fetuses at day 83 of gestation. The findings were reported in the main article, “Periconceptual maternal nutrition affects fetal liver programming of energy- and lipid-related genes”[1] . These data were generated to investigate the effects of periconceptual maternal vitamin and mineral supplementation and rates of body weight gain on the transcript abundance of genes associated with fetal hepatic metabolism and function. To this end, crossbred Angus beef heifers ( n = 35) were randomly assigned to 1 of 4 treatments in a 2 × 2 factorial design. The main effects tested were vitamin and mineral supplementation (VTM or NoVTM –at least 71 days pre-breeding to day 83 of gestation) and rate of weight gain (low (LG –0.28 kg/d) or moderate (MG – 0.79 kg/d) – from breeding to day 83). The fetal liver was collected on day 83 ± 0.27 of gestation. After total RNA isolation and quality control, strand-specific RNA libraries were prepared and sequenced on the Illumina® NovaSeq 60 0 0 platform to generate paired-end 150-bp reads. After read mapping and counting, differential expression analysis was performed with edgeR. We identified 591 unique differentially expressed genes across all six vitamin- gain contrasts (FDR ≤ 0.1). To our knowledge, this is the first dataset investigating the fetal liver transcriptome in response to periconceptual maternal vitamin and mineral supplementation and/or the rate of weight gain. The data described in this article provides genes and molecular pathways differentially programming liver development and function

    Maternal Vitamin and Mineral Supplementation and Rate of Maternal Weight Gain Affects Placental Expression of Energy Metabolism and Transport-Related Genes

    Get PDF
    Maternal nutrients are essential for proper fetal and placental development and function. However, the effects of vitamin and mineral supplementation under two rates of maternal weight gain on placental genome-wide gene expression have not been investigated so far. Furthermore, biological processes and pathways in the placenta that act in response to early maternal nutrition are yet to be elucidated. Herein, we examined the impact of maternal vitamin and mineral supplementation (from pre-breeding to day 83 post-breeding) and two rates of gain during the first 83 days of pregnancy on the gene expression of placental caruncles (CAR; maternal placenta) and cotyledons (COT; fetal placenta) of crossbred Angus beef heifers. We identified 267 unique differentially expressed genes (DEG). Among the DEGs from CAR, we identified ACAT2, SREBF2, and HMGCCS1 that underlie the cholesterol biosynthesis pathway. Furthermore, the transcription factors PAX2 and PAX8 were over-represented in biological processes related to kidney organogenesis. The DEGs from COT included SLC2A1, SLC2A3, SLC27A4, and INSIG1. Our over-representation analysis retrieved biological processes related to nutrient transport and ion homeostasis, whereas the pathways included insulin secretion, PPAR signaling, and biosynthesis of amino acids. Vitamin and mineral supplementation and rate of gain were associated with changes in gene expression, biological processes, and KEGG pathways in beef cattle placental tissues

    Untangling the placentome gene network of beef heifers in early gestation

    Get PDF
    The cotyledon and caruncle tissues provide a functional bridge between the fetus and the dam. However, the relationship between these tissues and the transcriptomic profile that underlies the tissue functions remains elusive. Herein we investigate the expression profile of cotyledon and caruncle from nulliparous beef heifers carrying female fetuses at day 83 of pregnancy to identify changes occurring across tissues that contribute to placental function and their tissue-specific roles. We identified 2654 differentially expressed genes [padj ≤ 0.05, abs(log2FC) ≥ 1], including nutrient transporters and paternally imprinted genes. We found key regulators of tissue function and differentiation, including FOXO4, GATA2, GATA3, and HAND1, rewired between the tissues. Finally, we shed light on the over-represented pathways related to immune tolerance, tissue differentiation and remodeling. Our findings highlighted the intricate and coordinated cross-talk between fetal-maternal tissues. They provided evidence of a fine-tuned gene regulatory network underlying pregnancy and tissue-specific function in the bovine placenta

    Vitamin and Mineral Supplementation and Rate of Gain in Beef Heifers I: Effects on Dam Hormonal and Metabolic Status, Fetal Tissue and Organ Mass, and Concentration of Glucose and Fructose in Fetal Fluids at d 83 of Gestation

    Get PDF
    Thirty-five crossbred Angus heifers (initial BW = 359.5 ± 7.1 kg) were randomly assigned to a 2 × 2 factorial design to evaluate effects of vitamin and mineral supplementation [VMSUP; supplemented (VTM) vs. unsupplemented (NoVTM)] and different rates of gain [GAIN; low gain (LG), 0.28 kg/d, vs. moderate gain (MG), 0.79 kg/d] during the first 83 d of gestation on dam hormone and metabolic status, fetal tissue and organ mass, and concentration of glucose and fructose in fetal fluids. The VMSUP was initiated 71 to 148 d before artificial insemination (AI), allowing time for mineral status of heifers to be altered in advance of breeding. At AI heifers were assigned their GAIN treatment. Heifers received treatments until the time of ovariohysterectomy (d 83 ± 0.27 after AI). Throughout the experiment, serum samples were collected and analyzed for non-esterified fatty acids (NEFA), progesterone (P4), insulin, and insulin-like growth factor 1 (IGF-1). At ovariohysterectomy, gravid reproductive tracts were collected, measurements were taken, samples of allantoic (ALF) and amniotic (AMF) fluids were collected, and fetuses were dissected. By design, MG had greater ADG compared to LG (0.85 vs. 0.34 ± 0.04 kg/d, respectively; p \u3c 0.01). Concentrations of NEFA were greater for LG than MG (p = 0.04) and were affected by a VMSUP × day interaction (p \u3c 0.01), with greater concentrations for NoVTM on d 83. Insulin was greater for NoVTM than VTM (p = 0.01). A GAIN × day interaction (p \u3c 0.01) was observed for IGF-1, with greater concentrations for MG on d 83. At d 83, P4 concentrations were greater for MG than LG (GAIN × day, p \u3c 0.01), and MG had greater (p \u3c 0.01) corpus luteum weights versus LG. Even though fetal BW was not affected (p ≥ 0.27), MG fetuses had heavier (p = 0.01) femurs than LG, and VTM fetuses had heavier (p = 0.05) livers than those from NoVTM. Additionally, fetal liver as a percentage of BW was greater in fetuses from VTM (P = 0.05; 3.96 ± 0.06% BW) than NoVTM (3.79 ± 0.06% BW), and from LG (p = 0.04; 3.96 ± 0.06% BW) than MG (3.78 ± 0.06% BW). A VMSUP × GAIN interaction was observed for fetal small intestinal weight (p = 0.03), with VTM-MG being heavier than VTM-LG. Therefore, replacement heifer nutrition during early gestation can alter the development of organs that are relevant for future offspring performance. These data imply that compensatory mechanisms are in place in the developing conceptus that can alter the growth rate of key metabolic organs possibly in an attempt to increase or decrease energy utilization

    Vitamin and Mineral Supplementation and Rate of Weight Gain during the First Trimester of Gestation in Beef Heifers Alters the Fetal Liver Amino Acid, Carbohydrate, and Energy Profile at Day 83 of Gestation

    Get PDF
    The objective of this study was to evaluate the effects of feeding heifers a vitamin and mineral supplement and targeting divergent rates of weight gain during early gestation on the fetal liver amino acid, carbohydrate, and energy profile at d 83 of gestation. Seventy-two crossbred Angus heifers were randomly assigned in a 2 × 2 factorial arrangement to one of four treatments comprising the main effects of vitamin and mineral supplementation (VTM or NOVTM) and feeding to achieve different rates of weight gain (low gain [LG] 0.28 kg/day vs. moderate gain [MG] 0.79 kg/day). Thirty-five gestating heifers with female fetuses were ovariohysterectomized on d 83 of gestation and fetal liver was collected and analyzed by reverse phase UPLC-tandem mass spectrometry with positive and negative ion mode electrospray ionization, as well as by hydrophilic interaction liquid chromatography UPLC-MS/MS with negative ion mode ESI for compounds of known identity. The Glycine, Serine, and Threonine metabolism pathway and the Leucine, Isoleucine, and Valine metabolism pathway had a greater total metabolite abundance in the liver of the NOVTM-LG group and least in the VTM-LG group (p \u3c 0.01). Finally, both the TCA Cycle and Oxidative Phosphorylation pathways within the Energy Metabolism superpathway were differentially affected by the main effect of VTM, where the TCA cycle metabolites were greater (p = 0.04) in the NOVTM fetal livers and the Oxidative Phosphorylation biochemicals were greater (p = 0.02) in the fetal livers of the VTM supplemented heifers. These data demonstrate that the majority of metabolites that are affected by rate of weight gain or vitamin/mineral supplementation are decreased in heifers on a greater rate of weight gain or vitamin/mineral supplementation

    Fetal Hepatic Lipidome Is More Greatly Affected by Maternal Rate of Gain Compared with Vitamin and Mineral Supplementation at day 83 of Gestation

    Get PDF
    Herein, we evaluated the hepatic lipid metabolic profiles of bovine fetuses in response to maternal vitamin and mineral supplementation (VMSUP; supplemented (VTM) or not (NoVTM)) and two different rates of gain (GAIN; low gain (LG), 0.28 kg/d, or moderate gain (MG), 0.79 kg/d). Crossbred Angus heifers (n = 35; initial BW = 359.5 ± 7.1 kg) were randomly assigned to a 2 × 2 factorial arrangement, resulting in the following treatment combinations: NoVTM-LG (n = 9), NoVTM-MG (n = 9), VTM-LG (n = 9), and VTM-MG (n = 8). Heifers received their treatments until d 83 of gestation, when they were ovariohysterectomized. Fetuses were harvested and liver samples were analyzed via ultrahigh-performance liquid chromatography–tandem mass spectroscopy to characterize lipid profiles and abundances. We identified 374 biochemicals/metabolites belonging to 57 sub-pathways of the lipid metabolism super-pathway. The majority of the biochemicals/metabolites (n = 152) were significantly affected by the main effect of GAIN. Maternal moderate rates of gain resulted in greater abundances (p ≤ 0.0001) of ω-3 fatty acids (eicosapentaenoate, docosapentaenoate, and docosahexaenoate) and lower abundances (p ≤ 0.0001) of ω-6 fatty acids. Further, MG resulted in the accumulation of several diacylglycerols and depletion of the majority of the monoacylglycerols. Concentrations of nearly all acylcarnitines (p ≤ 0.03) were decreased in VTM-LG fetal livers compared to all other treatment combinations, indicating a greater rate of complete oxidation of fatty acids. Levels of secondary bile acids were impacted by VMSUP, being greater (p ≤ 0.0048) in NoVTM than in VTM fetal livers. Moreover, NoVTM combined with lower rate of gain resulted in greater concentrations of most secondary bile acid biochemicals/metabolites. These data indicate that maternal diet influenced and altered fetal hepatic lipid composition in the first trimester of gestation. Maternal body weight gain exerted a greater influence on fetal lipid profiles than vitamin and mineral supplementation. Specifically, lower rate of gain (0.28 kg/d) resulted in an increased abundance of the majority of the biochemicals/metabolites identified in this study

    Vitamin and Mineral Supplementation and Rate of Gain in Beef Heifers II: Effects on Concentration of Trace Minerals in Maternal Liver and Fetal Liver, Muscle, Allantoic, and Amniotic Fluids at Day 83 of Gestation

    Get PDF
    We evaluated the effects of vitamin and mineral supplementation (from pre-breeding to day 83 of gestation) and two rates of gain (from breeding to day 83 of gestation) on trace mineral concentrations in maternal and fetal liver, fetal muscle, and allantoic (ALF) and amniotic (AMF) fluids. Crossbred Angus heifers (n = 35; BW = 359.5 ± 7.1 kg) were randomly assigned to one of two vitamin and mineral supplementation treatments (VMSUP; supplemented (VTM) vs. unsupplemented (NoVTM)). The VMSUP factor was initiated 71 to 148 d before artificial insemination (AI), allowing time for the mineral status of heifers to be altered in advance of breeding. The VTM supplement (113 g·heifer−1·d−1) provided macro and trace minerals and vitamins A, D, and E to meet 110% of the requirements specified by the NASEM, and the NoVTM supplement was a pelleted product fed at a 0.45 kg·heifer−1·day−1 with no added vitamin and mineral supplement. At AI, heifers were assigned to one of two rates of gain treatments (GAIN; low gain (LG) 0.28 kg/d or moderate gain (MG) 0.79 kg/d) within their respective VMSUP groups. On d 83 of gestation fetal liver, fetal muscle, ALF, and AMF were collected. Liver biopsies were performed prior to VMSUP factor initiation, at the time of AI, and at the time of ovariohysterectomy. Samples were analyzed for concentrations of Se, Cu, Zn, Mo, Mn, and Co. A VMSUP × GAIN × day interaction was present for Se and Cu (p \u3c 0.01 and p = 0.02, respectively), with concentrations for heifers receiving VTM being greater at AI and tissue collection compared with heifers not receiving VTM (p \u3c 0.01). A VMSUP × day interaction (p = 0.01) was present for Co, with greater (p \u3c 0.01) concentrations for VTM than NoVTM at the time of breeding. VTM-MG heifers had greater concentrations of Mn than all other treatments (VMSUP × GAIN, p \u3c 0.01). Mo was greater (p = 0.04) for MG than LG, while Zn concentrations decreased throughout the experiment (p \u3c 0.01). Concentrations of Se (p \u3c 0.01), Cu (p = 0.01), Mn (p = 0.04), and Co (p = 0.01) were greater in fetal liver from VTM than NoVTM. Mo (p ≤ 0.04) and Co (p \u3c 0.01) were affected by GAIN, with greater concentrations in fetal liver from LG than MG. In fetal muscle, Se (p = 0.02) and Zn (p \u3c 0.01) were greater for VTM than NoVTM. Additionally, Zn in fetal muscle was affected by GAIN (p \u3c 0.01), with greater concentrations in LG than MG. The ALF in VTM heifers (p \u3c 0.01) had greater Se and Co than NoVTM. In AMF, trace mineral concentrations were not affected (p ≥ 0.13) by VMSUP, GAIN, or their interaction. Collectively, these data suggest that maternal nutrition pre-breeding and in the first trimester of gestation affects fetal reserves of some trace minerals, which may have long-lasting impacts on offspring performance and health

    Measurement of the inclusive and dijet cross-sections of b-jets in pp collisions at sqrt(s) = 7 TeV with the ATLAS detector

    Get PDF
    The inclusive and dijet production cross-sections have been measured for jets containing b-hadrons (b-jets) in proton-proton collisions at a centre-of-mass energy of sqrt(s) = 7 TeV, using the ATLAS detector at the LHC. The measurements use data corresponding to an integrated luminosity of 34 pb^-1. The b-jets are identified using either a lifetime-based method, where secondary decay vertices of b-hadrons in jets are reconstructed using information from the tracking detectors, or a muon-based method where the presence of a muon is used to identify semileptonic decays of b-hadrons inside jets. The inclusive b-jet cross-section is measured as a function of transverse momentum in the range 20 < pT < 400 GeV and rapidity in the range |y| < 2.1. The bbbar-dijet cross-section is measured as a function of the dijet invariant mass in the range 110 < m_jj < 760 GeV, the azimuthal angle difference between the two jets and the angular variable chi in two dijet mass regions. The results are compared with next-to-leading-order QCD predictions. Good agreement is observed between the measured cross-sections and the predictions obtained using POWHEG + Pythia. MC@NLO + Herwig shows good agreement with the measured bbbar-dijet cross-section. However, it does not reproduce the measured inclusive cross-section well, particularly for central b-jets with large transverse momenta.Comment: 10 pages plus author list (21 pages total), 8 figures, 1 table, final version published in European Physical Journal

    Jet energy measurement with the ATLAS detector in proton-proton collisions at root s=7 TeV

    Get PDF
    The jet energy scale and its systematic uncertainty are determined for jets measured with the ATLAS detector at the LHC in proton-proton collision data at a centre-of-mass energy of √s = 7TeV corresponding to an integrated luminosity of 38 pb-1. Jets are reconstructed with the anti-kt algorithm with distance parameters R=0. 4 or R=0. 6. Jet energy and angle corrections are determined from Monte Carlo simulations to calibrate jets with transverse momenta pT≥20 GeV and pseudorapidities {pipe}η{pipe}<4. 5. The jet energy systematic uncertainty is estimated using the single isolated hadron response measured in situ and in test-beams, exploiting the transverse momentum balance between central and forward jets in events with dijet topologies and studying systematic variations in Monte Carlo simulations. The jet energy uncertainty is less than 2. 5 % in the central calorimeter region ({pipe}η{pipe}<0. 8) for jets with 60≤pT<800 GeV, and is maximally 14 % for pT<30 GeV in the most forward region 3. 2≤{pipe}η{pipe}<4. 5. The jet energy is validated for jet transverse momenta up to 1 TeV to the level of a few percent using several in situ techniques by comparing a well-known reference such as the recoiling photon pT, the sum of the transverse momenta of tracks associated to the jet, or a system of low-pT jets recoiling against a high-pT jet. More sophisticated jet calibration schemes are presented based on calorimeter cell energy density weighting or hadronic properties of jets, aiming for an improved jet energy resolution and a reduced flavour dependence of the jet response. The systematic uncertainty of the jet energy determined from a combination of in situ techniques is consistent with the one derived from single hadron response measurements over a wide kinematic range. The nominal corrections and uncertainties are derived for isolated jets in an inclusive sample of high-pT jets. Special cases such as event topologies with close-by jets, or selections of samples with an enhanced content of jets originating from light quarks, heavy quarks or gluons are also discussed and the corresponding uncertainties are determined. © 2013 CERN for the benefit of the ATLAS collaboration
    corecore