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a b s t r a c t 

Herein, we present a dataset based on the RNA-Seq anal- 

ysis of liver tissue from bovine female fetuses at day 83 

of gestation. The findings were reported in the main arti- 

cle, “Periconceptual maternal nutrition affects f etal liver pro- 

gramming of energy- and lipid-related genes” [1] . These data 

were generated to investigate the effects of periconceptual 

maternal vitamin and mineral supplementation and rates of 

body weight gain on the transcript abundance of genes as- 

sociated with fetal hepatic metabolism and function. To this 

end, crossbred Angus beef heifers ( n = 35) were randomly 
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Dataset link: Transcriptomic profiling of 

liver tissues of 83 days fetuses in response 

to early maternal nutrient supplementation 

(Original data) 
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assigned to 1 of 4 treatments in a 2 × 2 factorial design. The 

main effects tested were vitamin and mineral supplementa- 

tion (VTM or NoVTM – at least 71 days pre-breeding to day 

83 of gestation) and rate of weight gain (low (LG – 0.28 kg/d) 

or moderate (MG – 0.79 kg/d) – from breeding to day 83). 

The fetal liver was collected on day 83 ± 0.27 of gestation. 

After total RNA isolation and quality control, strand-specific 

RNA libraries were prepared and sequenced on the Illumi- 

na® NovaSeq 60 0 0 platform to generate paired-end 150-bp 

reads. After read mapping and counting, differential expres- 

sion analysis was performed with edgeR. We identified 591 

unique differentially expressed genes across all six vitamin- 

gain contrasts (FDR ≤ 0.1). To our knowledge, this is the 

first dataset investigating the fetal liver transcriptome in re- 

sponse to periconceptual maternal vitamin and mineral sup- 

plementation and/or the rate of weight gain. The data de- 

scribed in this article provides genes and molecular pathways 

differentially programming liver development and function. 

© 2023 The Author(s). Published by Elsevier Inc. 

This is an open access article under the CC BY-NC-ND 

license ( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 

Specifications Table 

Subject Agricultural and Biological Sciences 

Specific subject area Animal Science, Omics: Transcriptomics 

Type of data RNA-Seq raw data (FASTQ format), text files, figures, and table 

How the data were acquired Total RNA isolation: RNeasy Plus Universal Mini Kit (Qiagen®). 

Library construction: NEBNext® Ultra TM II Directional RNA Library Prep Kit for 

Illumina (New England BioLabs®). 

Sequencing: Paired-end (150 bases × 2) 

High-throughput sequencing on the Illumina® NovaSeq 60 0 0 platform. 

Data format Raw RNA-Seq files (FASTQ format) 

Raw read count files (.txt format) 

Description of data collection Fetal liver samples were collected on day 83 of gestation from 31 samples 

among four treatments [1] . Total RNA was extracted using the RNeasy Plus 

Universal Mini Kit (Qiagen®). Strand-specific, paired-end RNA libraries were 

prepared and sequenced at 150 bp reads. Raw fastq files were analyzed, and 

cleaned reads were mapped to the B. taurus reference genome. Read counts 

from STAR were used for differential gene expression analysis using edgeR. 

Data source location Animal Nutrition and Physiology Center (ANPC) – North Dakota State 

University. Fargo, North Dakota, USA 

Data accessibility All relevant data (raw and processed RNA-Seq data) [2] were deposited on: 

Repository name: Gene Expression Omnibus (GEO) 

Data identification number : GSE224419 

Direct URL to data: 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE224419 
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Value of the Data 

• This dataset provides insights into the effects of periconceptual maternal nutrition on fetal 

liver development, programming, and function. 

• This dataset can be mined under different bioinformatic approaches to identify novel targets 

and regulators of fetal liver programming during early gestation. 

• Other researchers can use this data for meta-analysis with a transcriptome profile generated 

at a different time point or maternal diet. 

• The dataset could be re-analyzed and integrated with public data to provide a comprehensive 

expression atlas of the hepatic tissue during early gestation. 

Objective 

Fetal growth is responsive to maternal nutrient intake. Macro and micronutrients play 

key roles in several biological functions and are essential for proper fetal development and 

metabolism. An increased number of studies have shown that maternal nutrition during the 

second and third trimesters of gestation can lead to long-term effects on offspring metabolism 

and health – reviewed in [3] . However, major developmental events occur during early gestation, 

including organogenesis. Additionally, there is still a lack of knowledge regarding the effects of 

mineral and vitamin supplementation and the rate of body weight gain during early gestation 

on fetal tissue programming. Therefore, the objective for generating this RNA-Seq dataset was 

twofold: (1) to identify differentially expressed genes (DEGs) in fetal livers from heifers under 

different plans of nutrition during early gestation, and (2) to identify biological processes and 

pathways that underlie hepatic function and metabolism in response to periconceptual maternal 

nutrition. Further details on the findings based on this dataset were reported in the main article 

[1] . The dataset herein described is the first one, to the best of our knowledge, that provides 

a genome-wide expression profile of the fetal liver in response to maternal diet during early 

gestation. 

1. Data Description 

We performed a whole transcriptome analysis of liver tissue from 31 female fetuses at day 

83 of gestation to investigate the role of maternal vitamin and mineral supplementation and 

the rate of body weight gain during the periconceptual period on fetal liver transcriptome and 

the underlying biological pathways. Samples were arranged in a 2 ×2 factorial design with the 

main effects of vitamin and mineral supplementation and rate of weight gain [4] . Herein, we de- 

scribe the strand-specific, RNA-Seq dataset generated on the Illumina® NovaSeq 60 0 0 platform. 

The raw paired-end reads (fastq files) from 31 samples and the raw gene counts (text file) are 

publicly available on the GEO database (GEO accession ID: GSE224419). Below are described the 

files provided within the current data article. Table 1 shows the metadata, including the sample 

within each treatment, mapping statistics per sample – the number of raw reads, mapped reads, 

percentage of mapped reads, and the number of replicates per treatment. We generated, on av- 

erage, 21.45 million cleaned reads per sample (range from 19.7 to 26.7M). On average, 94.5% of 

the total reads were uniquely mapped. 

Fig. 1 A shows the read quality (Phred score was > 30) of the sequencing data after fastQC 

analysis. The RNA-Seq mapping and read counting were performed using the STAR aligner. The 

mapping statistics results using –quantMode GeneCounts and the mapped features from STAR 

were summarized by MultiQC and are shown in Fig. 1 B. 

Gene counts were normalized using the cpm function from edgeR. The representation of the 

distributions of RNA-Seq data after normalization (CPM values) for 31 samples within four treat- 

ments are shown in Fig. 1 C. The boxplot shows a consistent average across the samples in the 

dataset. The pairwise differential expression analysis between the treatment groups revealed a 
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Table 1 

Descriptive summary of the experimental population and RNA sequencing statistics. 

Sample ID GEO accession number Reads (Million sequences) Treatment 

Raw Clean Aligned % Aligned 

LV_15 GSM7021974 21.6 21.4 20.3 94.7% NoVTM_LG 

LV_16 GSM7021975 22.8 22.5 21.2 94.4% NoVTM_LG 

LV_23 GSM7021976 20.8 20.4 19.3 94.7% NoVTM_LG 

LV_25 GSM7021977 22.4 22.2 21.1 95.2% NoVTM_LG 

LV_34 GSM7021978 20.5 20.2 19.1 94.8% NoVTM_LG 

LV_37 GSM7021979 23.5 23.1 21.9 94.7% NoVTM_LG 

LV_52 GSM7021980 23.1 22.7 21.4 94.0% NoVTM_LG 

LV_68 GSM7021981 20.8 20.1 19 94.4% NoVTM_LG 

LV_22 GSM7021982 21.5 21 19.9 94.6% NoVTM_MG 

LV_24 GSM7021983 27.1 26.7 25.2 94.3% NoVTM_MG 

LV_28 GSM7021984 20.7 20.4 19.4 95.0% NoVTM_MG 

LV_3 GSM7021985 23.7 23.4 22.1 94.4% NoVTM_MG 

LV_31 GSM7021986 20 19.7 18.5 94.2% NoVTM_MG 

LV_35 GSM7021987 21.3 20.9 19.7 94.5% NoVTM_MG 

LV_43 GSM7021988 23.3 23 21.8 94.5% NoVTM_MG 

LV_74 GSM7021989 20.4 20.1 18.9 94.2% NoVTM_MG 

LV_18 GSM7021990 20.6 20.3 19.3 95.0% VTM_LG 

LV_29 GSM7021991 20.5 20.2 19.1 94.7% VTM_LG 

LV_36 GSM7021992 20.5 20.2 19.2 94.6% VTM_LG 

LV_41 GSM7021993 20.5 20.2 18.4 91.2% VTM_LG 

LV_46 GSM7021994 22.4 22.1 20.9 94.6% VTM_LG 

LV_59 GSM7021995 23.6 23.3 22 94.5% VTM_LG 

LV_60 GSM7021996 23.2 23 21.6 93.8% VTM_LG 

LV_65 GSM7021997 20.3 20 19 95.2% VTM_LG 

LV_13 GSM7021998 20.9 20.6 19.6 95.0% VTM_MG 

LV_20 GSM7021999 20 19.7 18.7 94.8% VTM_MG 

LV_44 GSM70220 0 0 21.7 21.4 20.3 94.7% VTM_MG 

LV_45 GSM7022001 23.1 22.8 21.6 94.9% VTM_MG 

LV_48 GSM7022002 22.4 22.2 21.2 95.1% VTM_MG 

LV_67 GSM7022003 21.3 21 20 95.4% VTM_MG 

LV_76 GSM7022004 20.5 20.2 19.2 94.7% VTM_MG 

Average 21.77 21.45 20.29 94.5% VTM_MG 

total of 591 differentially expressed genes (DEGs) across all six contrasts (FDR ≤ 0.1). The unique 

and overlapping differentially expressed genes that underlie the main factors of mineral and vi- 

tamin and/or rate of weight gain of gain are shown in Fig. 1 D. The list of differentially expressed 

genes is available as a supplementary file within the main manuscript [1] . 
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Fig. 1. Overview of the RNA-Seq data and differential expression analyses of the liver of fetuses from heifers receiving 

or not vitamin-mineral supplementation (VTM or NoVTM) and fed to achieve different rates of body weight gain [low 

gain (LG) or moderate gain (MG)] during early gestation. (A) Overall Phred score; (B) The statistical results from read 

mapping; (C) Distributions of RNA-Seq data after normalization (CPM values) for 31 samples within four treatments. 

The treatments are color coded as red (NoVTM_LG), green (NoVTM_MG), cyan (VTM_LG), and purple (VTM_MG); (D) 

Number of unique and overlapping differentially expressed genes across contrasts for the main effects of mineral and 

vitamin and/or rate of weight gain. 

2. Experimental Design, Materials and Methods 

2.1. Experimental design, treatments, and tissue collection 

A 2 ×2 factorial arrangement of treatments was designed to investigate the main effects of 

mineral and vitamin supplementation (VTM vs. NoVTM) and rate of body weight gain (low 

gain [LG] vs. moderate gain [MG]). To this end, crossbred Angus beef heifers were stratified 

by body weight and randomly assigned to either the VTM or no VTM (NoVTM) supplementa- 

tion. At breeding, heifers were randomly assigned to either a LG (0.28kg/d) or MG (0.79kg/d). 

The full description of experimental diets and nutritional composition are described elsewhere 

[ 1 , 3 ]. Thus, the treatments were arranged as (1) no vitamin and mineral supplementation and 

low gain (NoVTM_LG, n = 9); (2) vitamin and mineral supplementation and low gain (VTM_LG, 

n = 9); (3) no vitamin and mineral supplementation and moderate gain (NoVTM_MG, n = 9), and 

(4) vitamin and mineral supplementation and moderate gain (VTM_MG, n = 8). 

Heifers were estrus synchronized and bred by artificial insemination using female-sexed se- 

men from a single sire. On day 83 ±0.27 of gestation, the fetus was removed through ovariohys- 

terectomy and dissected to collect the fetal liver. The liver tissue was snap-frozen on dry ice and 

stored at − 80 °C. 
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2.2. RNA isolation, library construction, sequencing, and data processing 

To isolate the total RNA from the fetal liver, we used the RNeasy Plus Universal Mini Kit (Qi- 

agen®, Germantown, MA , USA , Cat. #73,404). The RNA quality and purity were evaluated using 

the Agilent 2100 Bioanalyzer and agarose gel electrophoresis. The RNA quantity was measured 

using the Qubit TM Broad Range RNA assay kit (ThermoFisher Scientific, Cat. #Q10210). Based on 

that, 31 samples ( n = 8 per group, except VTM_MG – n = 7) met the quantity and quality param- 

eters for library preparation. 

Strand-specific RNA libraries were prepared using the NEBNext® Ultra TM II Directional RNA 

Library Prep Kit for Illumina (New England BioLabs®, Ipswich, MA, USA). Sequencing was per- 

formed on the Illumina® NovaSeq 60 0 0 platform with read lengths of 2 × 150 base pairs and an 

estimated depth of 20 M reads/sample. Library preparation and sequencing were carried out at 

Novogene Co. (Nanjing, China). 

Raw data were cleaned for filtering out sequencing adaptors and reads with a Phred score 

lower than 30. We used the FastQC v0.11.8 [5] tool for quality control and to estimate read 

statistics. To aggregate the files from FastQC, we used MultiQC v1.9 [6] . 

The reads that passed quality control were mapped to the Bos taurus reference genome (ARS- 

UCD 1.2) [7] using the STAR aligner v. 2.7.3a [8] and the gene annotation file (release 100) 

from the Ensembl database. To count the number of mapped reads per gene, the parameter 

–quantMode GeneCounts from STAR was used. The mapping statistic results from STAR were 

aggregated using the MultiQC software. Next, the read counting files from each sample were 

concatenated ( read strand aligned with RNA - reverse ) into one dataset and used for differential 

expression analysis. 

2.3. Differential gene expression and functional over-representation analysis 

The NOISeq v.2.26.0 [9] and edgeR v.3.24.3 [10] in the RStudio [11] v.1.1.442 environment 

for R v.3.5.1 [12] were used for post-mapping quality control. The edgeR R-package was used 

for filtering out genes not expressed or lowly expressed ( filterByExpr function). Next, the differ- 

ential expression analysis was carried out using edgeR. All pairwise comparisons between the 

groups resulted in six contrasts named as follows: (1) VTM_MG vs. NoVTM_LG, (2) VTM_MG vs. 

VTM_LG, (3) VTM_MG vs. NoVTM_MG, (4) VTM_LG vs. NoVTM_LG, (5) VTM_LG vs. NoVTM_MG, 

(6) NoVTM_MG vs. NoVTM_LG. Differentially expressed genes (DEGs) were identified after mul- 

tiple testing corrections of the p-values based on the Benjamini-Hochberg methodology (FDR ≤
0.1). 

We used the UpSetR v.1.4.0 package [13] to visualize the intersections among different lists 

( n = 6) of differentially expressed genes (DEGs). Furthermore, overlaps across the DEGs list for 

the main effects of VTM and rate of body weight gain were retrieved using the InteractiVenn 

web tool [14] and represented as Venn diagrams. Biological processes and pathways underlying 

the DEGs for each contrast were retrieved using the ShinyGo v.0.76.2 web tool [15] . Significant 

results were identified after p-value multiple testing correction (FDR ≤ 0.05). 

Ethics Statements 

All animal experiments followed the relevant guidelines and regulations. The experimental 

design, animal management, and tissue collection were approved by the North Dakota State Uni- 

versity Institutional Animal Care and Use Committee (IACUC #A19012). 
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