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A B S T R A C T   

The cotyledon and caruncle tissues provide a functional bridge between the fetus and the dam. However, the 
relationship between these tissues and the transcriptomic profile that underlies the tissue functions remains 
elusive. Herein we investigate the expression profile of cotyledon and caruncle from nulliparous beef heifers 
carrying female fetuses at day 83 of pregnancy to identify changes occurring across tissues that contribute to 
placental function and their tissue-specific roles. We identified 2654 differentially expressed genes [padj ≤ 0.05, 
abs(log2FC) ≥ 1], including nutrient transporters and paternally imprinted genes. We found key regulators of 
tissue function and differentiation, including FOXO4, GATA2, GATA3, and HAND1, rewired between the tissues. 
Finally, we shed light on the over-represented pathways related to immune tolerance, tissue differentiation and 
remodeling. Our findings highlighted the intricate and coordinated cross-talk between fetal-maternal tissues. 
They provided evidence of a fine-tuned gene regulatory network underlying pregnancy and tissue-specific 
function in the bovine placenta.   

1. Introduction 

The placenta is formed by an intricate and tightly regulated rela
tionship between fetal and maternal tissues that work together to ensure 
a successful pregnancy [1]. In so-called cotyledonary placentas (giraffes, 
pronghorn antelope, cattle and other bovids including waterbuck, gnu, 
impala, goats, and sheep), the fetal cotyledons (COT) and maternal 
caruncles (CAR) form a placentome, which provides a functional bridge 
between the fetus and the mother [1–3]. This differs from other 
placental types, such as hemochorial placentas of primates, rodents and 
bats, or the endotheliochorial placenta of carnivores, in which the 
maternal endometrial contribution to the placenta is partially eroded 
[1]. Thus, the cotyledonary placenta is ideally suited to study the fetal 
(COT) vs. the maternal (CAR) portions of the placenta. 

The complexity of mammalian placental function goes beyond its 
role in transporting nutrients and metabolic wastes. For example, the 

placenta plays a pivotal role in implantation, maternal recognition of 
pregnancy through hormonal and growth factor synthesis, and immu
nomodulatory responses [4–6]. In addition, the physiological, 
biochemical, and molecular processes in conceptus implantation and 
placentation are spatially and temporally regulated to sustain fetal 
development [6,7]. The first half of gestation is marked by increased 
placental growth, whereas placental function increases throughout 
pregnancy (~ 280 days in cows) to provide nutrients to the growing 
fetus [8]. These synchronous processes are coordinated through mo
lecular and physiological pregnancy-related mechanisms, including 
fetal-maternal interactions and a genomic and epigenomic multilayered 
regulatory network [3,6,9,10]. Despite the growing knowledge on 
placentation and the fetal-maternal relationship, the genomic basis un
derlying this cross-talk has received little attention. 

A growing number of studies have reported the placental transcrip
tional and regulatory profiles of humans and animal models [4,11,12]. 
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Saben et al. [4] described the human placenta transcriptome, and Gong 
et al. [11] provided a deep characterization of coding and non-coding 
RNAs underlying placental function in health and disease. At the same 
time, most of the studies in livestock species have focused on a few 
candidate genes [12–14]. To the best of our knowledge, there is no 
genome-wide transcriptomic study in cattle that describes the differ
ences between the fetal and maternal placental profiles. Thus, our un
derstanding of the complexity of the COT/CAR relationship in livestock 

is still rudimentary. Lotfan et al. [13] reported 1075 DEGs by comparing 
the expression of pregnant fetal COT with non-pregnant CAR in buf
faloes. Likewise, Murugesan et al. [14] profiled coding and long non- 
coding RNAs of CAR from pregnant and non-pregnant buffaloes. 

Despite increased knowledge of the fetal-maternal relationship 
leading to a fine-tuning of gene expression, the genetic interplay be
tween COT and CAR tissues of beef heifers in early pregnancy is still to 
be unveiled. Furthermore, it remains elusive to untangle the biological 

Fig. 1. Transcriptomic profiles of cotyledon (COT) and caruncle (CAR) tissues from beef heifers at day 83 of pregnancy. (A) Differentially expressed genes (DEGs) 
coding nutrient transporters. Substrates were compiled from [15,20,21]. (B) Key transcription factor (TFs) expression profiles identified by RIF. Genes in bold were 
found as both DEGs and key TFs. Up and downregulation are color-coded as presented in the legend. 
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processes and pathways underlying the specific changes in the fetal and 
maternal tissues during placentation. Thus, we designed this study to 
investigate the transcriptomic profile of COT and CAR tissues and 
identify the changes occurring across tissues that contribute to placen
tation and tissue-specific functions. 

Herein we report a comprehensive and systematic analysis of COT 
and CAR transcriptomic profiles from beef heifers (primiparous) at the 
end of the first trimester of pregnancy (day 83 ± 2). We first identified 
up and downregulated genes by comparing the expression profiles of the 
fetal (COT) vs. the maternal (CAR) portions of the placenta. Further
more, we reported differentially expressed nutrient transporters and 
imprinted coding genes. Next, we inferred key regulators (transcription 
factors, TF) of tissue-specific function and differentiation. We created 
regulatory networks to model the gene-gene relationships and tissue- 
specific gene rewiring through co-expression and clustering analyses. 
Finally, we found that genes underlying pathways, such as PI3K-AKT, 
MAPK, and Wnt, had different expression profiles between the fetal 
and maternal placental tissues. 

2. Results 

We applied a comprehensive and systematic analysis on CAR and 
COT transcriptomic profiles of beef heifers at day 83 of pregnancy. The 
genome-wide RNA-Seq of seven paired COT and CAR samples generated 
a total of 321.2 M reads (~ 22.9 M reads per sample) (Table S1 – 
Table 1). Mapping reads to the ARS-UCD 1.2 reference genome revealed 
that, on average, 97% of reads were uniquely mapped. Based on an 
integrative approach, herein, we reported significant differentially 
expressed genes (DEGs) and co-expressed networks of genes that un
derlie COT and CAR function. Furthermore, we retrieved nutrient 
transporters, imprinted genes, and key TFs modulating gene expression, 
tissue regulation, and function. 

2.1. Differential expression of COT vs. CAR tissues 

From stringent quality control, 14,312 genes were tested for differ
ential expression out of 27,607 reported on the Ensembl annotation file. 
We followed the DESeq2 approach to identify DEGs by contrasting COT 
vs. CAR [Padj value cut-off ≤0.05 and abs(log2FC) ≥ 1]. Among the 
2654 DEGs, 63% were downregulated in COT. While most of the DEGs 
were protein-coding, we also identified long (n = 62) and small (n = 22) 
non-coding RNAs, including bta-miR-431 and miR-433, that were 
upregulated in COT (Table S1 – Table 2). 

To understand the maternal-fetal cross-talk that underlies nutrient 
transport, we screened the DEGs list to identify nutrient transporter- 
coding genes [15]. We found 78 genes involved with the fetal provi
sion of nutrients, mainly from the ABC and SLC nutrient transporter 
families (Fig. 1A). Interestingly, while most of the genes involved with 
amino acid transport were upregulated in COT, those providing lipids 
were downregulated. 

2.2. Placental imprinted genes and key transcription factor regulators 
(TFs) 

To shed light on the putative functional roles of the placental tran
scripts that were differentially expressed, we searched for imprinted 
genes that were included in the DEG list. Based on the imprinted gene 
database [16], we identified 14 and 36 DEGs that were previously re
ported as imprinted in cattle or humans, respectively (Table S1 – 
Table 3.) Interestingly, 10 DEGs were reported as paternally imprinted 
in cattle, and eight of them were upregulated in COT. Among the cattle 
imprinted genes found here, we can highlight DIO3, IGF2, MEST, PEG3, 
PEG10, PLAGL1, and DIRAS3. Except for DIRAS3, all the other imprinted 
genes were upregulated in COT. By overlapping the DEGs with the 
human imprinted gene list, we found that GATA3 is paternally imprinted 
and was upregulated in COT. Conversely, HOXA2 and HOXA11 were 

downregulated and maternally imprinted. 
Based on the regulatory impact factor metric (RIF) [17], we priori

tized key regulator TFs potentially modulating the expression of differ
entially expressed genes between COT and CAR and driving tissue- 
specific functions. Using RIF1 and RIF2 to test 863 TFs from the Ani
mal TF database v3.0 [18] and expressed in the placentome (COT and 
CAR portions of the placenta), we identified 84 key TFs (Fig. 1B) 
grouped into 79 families (p-value ≤ 0.05). Among these 79 families, the 
zinc finger C2H2 and homeobox were over-represented by 18 and 9 TFs, 
respectively (Table S1 – Table 4). From RIF1, the TFs AFF2 (z-score = −

3.804) and NRF2 (z-score = − 3.636) showed the most extreme negative 
values, whereas ARID3A (z-score = 3.057) and ZFP57 (z-score = 2.965) 
showed the greatest positive values. Likewise, for RIF2, we found FOXO4 
(z-score = − 3.038) and GATA2 (z-score = − 2.944) as the extreme 
negative and ZNF391 (z-score = 2.367) and GLMP (z-score = 2.502) as 
the extreme positive. Interestingly, among the key TFs, we identified 33 
that were DEGs. Most of these differentially expressed TFs were upre
gulated in COT, including ARID3A, FOXO4, GATA2, GATA3, HAND1, 
PPARD, and PPARG. Conversely, among the downregulated TFs were 
HOXD10, HOXB2, THRB, and ZNF711. The significant TFs identified as 
RIF1 and RIF2 are reported in Table S1 – Table 4. 

We performed a functional over-representation of biological pro
cesses (BP) and KEGG pathways to understand the biological role of 
DEGs and key TFs in the bovine placentome. First, we broke down the 
BP, which were differentially regulated based on the tissue, by analyzing 
up and downregulated genes separately (Table S1 – Tables 5 and 6). This 
approach retrieved embryonic, tissue, and animal organ morphogenesis 
among the over-represented BP that underlie the upregulated genes in 
COT (Fig. 2A). Additionally, and not surprisingly, the downregulated 
genes were acting mainly in immune system-related processes such as 
cytokine production, leukocyte migration, and inflammatory response 
(Fig. 2B). Second, we analyzed DEGs and key TFs under a cluster anal
ysis framework implemented in ClueGO [19] to identify KEGG path
ways. Based on this analysis, we identified ten over-represented KEGG 
pathways (Fig. 2C) that included ovarian steroidogenesis, thyroid hor
mone synthesis, glutathione metabolism, and ECM-receptor interaction 
(FDR ≤ 0.05). The list of pathways and underlying genes for all clusters 
is reported in Table S1 – Table 7. 

2.3. Transcription factors are hubs in COT and CAR co-expression 
networks 

We further explored the functional relationship between gene pairs 
within placental tissues to investigate the specificities of gene rewiring 
and the underlying biological processes responsible for the differences in 
CAR and COT regulation. First, using the partial correlation and infor
mation theory (PCIT) algorithm [22], we constructed tissue-specific 
networks using the co-expression patterns of 2705 genes that included 
the DEGs and key TFs. Second, we used gene connectivity to determine 
tissue-specific gene rewiring by applying the concept of differential 
connectivity (DK) [23]. Lastly, we used the k-means approach to cluster 
genes with similar expression behavior across COT and CAR and shed 
light on the biological processes. 

Our network analysis retrieved 220,273 and 228,578 significantly 
co-expressed pairs from CAR and COT, respectively (p ≤ 0.05). To 
reduce the data dimensionality and narrow down the biological re
lationships, we kept only gene pairs with a |r| ≥ 0.8. Thus, 6660 pairs 
(1431 unique genes) for CAR (Table S2 – Table 1) and 2829 pairs for 
COT (1620 unique genes) were kept for further analysis (Table S2 – 
Table 2). Then, we used connectivity as a measure of centrality to select 
genes with a high degree (hub genes). The CAR tissue showed greater 
average connectivity (14.40) than COT (11.33), and TFs presented the 
greatest connectivity in both tissues. We identified 61 and 59 hub genes 
from CAR and COT, respectively (p ≤ 0.05). The HAND1, PPARD, and 
FOXO4 showed the greatest connectivity within CAR, whereas ZNF391, 
SATB2, and ENSBTAG00000038635 were highlighted in COT (Figs. 3 
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and 4). 
To identify the most rewired (differentially connected) genes be

tween CAR and COT, we tested 2636 genes that were retrieved from the 
PCIT analysis (|r| ≥ 0.8, p < 0.05). Based on that, we found 56 differ
entially connected genes (Table S2 – Table 3) (p ≤ 0.05), and among 
them, 26 were differentially expressed as well. Among the DK genes, we 
identified 33 genes with a gain of connectivity in CAR, including 
HAND1, PPARD, FOXO4, ZFP57, and TFP2A. On the other hand, genes 
with increased connectivity in COT included SATB2, NFATC2, NR2F2, 
and TCF12. 

We used k-means hierarchical clustering to identify functionally 
relevant gene groups from the CAR and COT gene sets. We clustered 
4000 genes out of 14,312 with an SD ≥ 0.4 that were gathered in four 

clusters (Fig. 5A). Cluster A grouped 1747 genes that were highly 
expressed in COT. The remaining genes, however, were more expressed 
in CAR, mainly in clusters C (n = 1362) and D (n = 405). The genes 
gathered in each cluster and the k-means values are reported in Table S2 
– Table 4. Supporting our hypothesis that specific pathways underlie the 
tissue-specific function and maternal-fetal cross-talk, we found different 
KEGG pathways over-represented in each cluster (Fig. 5B). Over- 
represented pathways from highly expressed genes in COT (cluster A) 
included key signaling pathways such as Wnt, PI3K-Akt, and MAPK. 
Furthermore, we found metabolic pathways involved with carbon 
metabolism, biosynthesis of amino acids, and steroid biosynthesis. From 
the remaining clusters, we can highlight pathways related to cell 
structure and remodeling, such as focal adhesion and ECM-receptor 

Fig. 2. Functional over-representation of differentially expressed genes and key transcription factors from placentomes of beef heifers at day 83 of pregnancy. Over- 
represented biological processes of upregulated (A) and downregulated (B) genes in cotyledon. (C) KEGG pathways of DEGs and transcription factors based on the 
cluster analysis framework from ClueGO. Significant terms were taken when FDR ≤ 0.05. Clusters are color-coded as follows: ECM-receptor interaction – cyan; 
pathways in cancer – magenta; ovarian steroidogenesis – dark blue; thyroid hormone synthesis – dark purple; regulation of lipolysis in adipocytes; glutathione 
metabolism – green; phagosome - fluorescent green; complement and coagulation cascades – dark red. (For interpretation of the references to color in this figure 
legend, the reader is referred to the web version of this article.) 
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interactions. Furthermore, complement and coagulation cascades, an
tigen processing and presentation, and phagosomes were over- 
represented in cluster D. The underlying genes of over-represented 

pathways (FDR < 0.05) for all clusters are reported in Table S2 – Table 5. 

3. Discussion 

The onset of placental attachment to the uterus is coordinated by a 
complex cross-talk of cellular and molecular processes. Likewise, 
orchestrated mechanisms regulate vasculogenesis, fetal growth and 
development, and maintenance of a successful pregnancy [13,24]. 
However, modeling fetal-maternal communication and the interplay of 
molecular mechanisms during early embryonic development and 
placentation is still largely unknown. Here, we report a comprehensive 
and systematic analysis of CAR and COT transcriptomic profiles from 
beef heifers at day 83 of pregnancy. We first identified up and down
regulated genes by comparing the expression profiles of the fetal (COT) 
vs. the maternal (CAR) placenta. Then, mining the data, we reported 
differentially expressed nutrient transporters and imprinted coding 
genes and putative TFs modulating gene expression differences between 
the tissues. Further, through co-expression and clustering analysis, we 
created regulatory networks to model the gene-gene relationship and 
tissue-specific gene rewiring. Finally, we pointed out over-represented 
BP and KEGG pathways that underlie tissue-specificities. 

Our differential expression analysis showed that most of the DEGs 
were downregulated in COT, suggesting a pivotal role of the maternal 
portion of the placenta to establish and actively modulate this cross-talk. 
Involved in essential functions for the feto-maternal interaction, the 
DEGs underlined immune tolerance, trophoblast invasion, and tissue 
remodeling processes [25]. The functional analysis highlighted the 
different functions over-represented by the up and downregulated 
genes. Likewise, potentially activated and repressed pathways rein
forced the specificities of tissue function. Moreover, transcriptional 
regulation through TFs and epigenetic mechanisms play a key role not 
only in fetal development but also in tissue communication. Our findings 
shed light on the differences in gene expression profiles between fetal 
and maternal tissues at the end of the first trimester of pregnancy. While 
we focused on female fetuses only, a growing number of studies have 
shown the interplay between the maternal condition and fetal sex on 
placental function and gene expression [26,27]. Therefore, further 
investigation is still required to understand the sex-depended placental 
differences in bovine. 

3.1. Imprinted genes and non-coding RNAs play a role in placental 
function 

By overlapping the DEGs with the list of imprinted genes from cattle, 
we identified 10 genes out of 14 reported as paternally imprinted in 
cattle. Imprinted genes have major effects on development and placental 
biology [10]. Here, DIO3, DLK1, GNAS, IGF2, MEST, PEG10, PEG3, and 
RTL1 were among the upregulated genes in COT. Increased expression of 
paternally imprinted genes maximizes fetal resource extraction from the 
mother and improves offspring fitness [28,29]. These genes have been 
reported as regulating placental function and thus the supply of nutri
ents to the fetus [10,29]. For example, PAG10 silencing [30] and GNAs 
mutation [31] were associated with reduced trophoblast differentiation 
and intrauterine growth retardation, respectively. Interestingly, miRNAs 
can be translated in clusters with imprinted genes. We found the RTL1 
gene upregulated in COT, and it is reported as paternally imprinted. 
RTL1 is associated with a maternally-expressed antisense transcript 
(anti-RTL1), that serves as the primary transcript to generate miRNAs 
such as miR-431 and miR-433 in mice [32]. These miRNAs were found 
here as upregulated in COT. The paternal deletion Pol-like domain of 
RTL1 led to late fetal and neonatal lethality and pre- and post-natal 
growth retardation of the mice embryo and placenta [33]. Our obser
vations regarding the paternal contribution to the fetal portion of the 
placenta (COT) are supported by other authors [27,34] and leave open 
questions regarding the impacts of altered paternal conditions on 
placental development and function. 

Fig. 3. Caruncle regulatory network of differentially expressed genes and key 
transcriptions factors of beef heifers at day 83 of gestation. Nodes are differ
entially expressed genes or key transcription factors with a |r| ≥ 0.8. Nodes 
with a magenta border were differentially connected between cotyledon and 
caruncle. The node size and color (from light to dark) are proportional to the 
number of connections for each gene. Nodes with few connections not linked to 
the main network are not showed. Transcription factors are represented by a 
diamond shape. High-resolution image is provided in supplementary material. 
(For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 

Fig. 4. Cotyledon regulatory network of differentially expressed genes and key 
transcriptions factors of beef heifers at day 83 of gestation. Nodes are differ
entially expressed genes or key transcription factors with a |r| ≥ 0.8. Nodes 
with a magenta border were differentially connected between cotyledon and 
caruncle. The node size and color (from light to dark) are proportional to the 
number of connections for each gene. Nodes with few connections not linked to 
the main network are not showed. Transcription factors are represented by a 
diamond shape. High-resolution image is provided in supplementary material. 
(For interpretation of the references to color in this figure legend, the reader is 
referred to the web version of this article.) 
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Other potential epigenetic mechanisms modulating placental and 
fetal development found in our study were non-coding RNAs (ncRNAs). 
We identified 66 long and 22 small ncRNAs, including the upregulated 
bta-miR-433, miR-431, and miR-450b. Despite the gap in knowledge for 
the role of ncRNAs in placentation, they have been reported as pivotal 
for trophoblast cell functions and immune and inflammatory responses 
[6]. In mice, miR-450b was highly expressed and differentially regulated 
in trophoblast stem cells [35]. Although our approach was not designed 
to identify ncRNAs, these findings reinforce their roles in placental 

development and warrant further investigation. 

3.2. Nutrient transporter-coding genes were differentially expressed 

The interplay between the fetal needs and maternal nutrients avail
able is tightly regulated [36,37]. Our approach identified several DEGs 
encoding nutrient transporters. Vitamin metabolic processes, biosyn
thesis of amino acids (AA), and steroid biosynthesis were over- 
represented by the upregulated genes in COT. Furthermore, nutrient- 

Fig. 5. Hierarchical clustering of gene expression (A) and over-represented KEGG pathways (B) of cotyledon (COT) and caruncle (CAR) genes from beef heifers at 
day 83 of pregnancy. Lower and greater expression levels than average for each row are color-coded as green or red, respectively. The x-axis shows COT (CO) and 
CAR (CA) sample ID. Clusters are color-coded according to the legend. The KEGG pathways are hierarchically arranged based on functional similarity. The bigger the 
dot, the more significant the term is (FDR ≤ 0.05). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of 
this article.) 
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sensing pathways, such as PI3K-AKT and MAPK signaling, were among 
the over-represented pathways from the highly expressed genes in COT. 
Among them, RELN, which is involved with glucose homeostasis, was 
found upregulated in COT. 

Genes from the SLC family that mainly encode AA transporters were 
upregulated in COT, whereas some of the downregulated genes from the 
ABC and SLC families encoded lipid transporters. Nutrients are provided 
to the fetus initially as histiotrophic and then hemotrophic nutrition 
[38,39]. Menezes et al. [40] reported an increased concentration of 
neutral AA in the allantoic fluid at day 83 of pregnancy in response to 
maternal vitamin supplementation. During gestation, increased lipid 
transport is required to meet the fetal needs, for hormone synthesis, and 
as inflammatory mediators [41]. Considering the fetal and placental 
growth trajectories, an increased nutrient supply is expected to meet the 
demands of cellular turnover, differentiation, and placental develop
ment [39,40,42]. 

3.3. Transcription factors lead to tissue-specific gene regulation 

Based on the RIF measure, we retrieved 84 TFs acting as potential 
modulators of differential expression. These TFs were then identified as 
hubs within the tissue network and differentially connected between 
tissues. Furthermore, although most of these TFs were not differentially 
expressed, a clear expression profile difference observed between tissues 
is likely driving the tissue specificities. Several TFs have been reported 
as required for placental development [3]. We identified nine genes 
from the FOX family as DEGs, most of them downregulated in COT. 
Furthermore, FOXO4 was significantly more connected in CAR and 
pointed out as a key regulator of differential expression. The FOX family 
has been suggested as a central regulator of cell fate due to its role in 
modulating cell cycle and differentiation [43]. In addition to being 
highly expressed in the human placenta [4], FOXO4 is essential for the 
neural differentiation of human embryonic stem cells [44]. 

We identified five members of the GATA family upregulated in COT. 
These genes are involved with gene expression regulation, trophoblast 
lineage differentiation, and trophectoderm maintenance [40,41]. 
Among them, GATA2 and GATA3 were both putative key regulators and 
differentially connected. Similar findings were found for MSX1 and 
HAND1 TFs. Ma et al. [45] reported that GATA2 and GATA3 were reg
ulators of trophoblast-specific gene expression through the differential 
synthesis of placental hormones. From the MSX family of homeobox 
protein, we found MSX2 upregulated in COT. Together, MSX1 and MSX2 
are central regulators of tissue morphogenesis [46]. MSX1 and 2 were 
involved with the embryonic development of limbs, craniofacial tissues 
[47], cardiovascular system, and fetal growth [48]. The HAND1 gene is 
involved with placentation and cardiac morphogenesis [49]. Courtney 
et al. [50] reported that HAND1 expression in placental chorion and 
trophoblast is necessary for labyrinth formation and vascularization. 
Furthermore, these authors found that HAND1 knockout leads to early 
lethality in mice. Taken together, these findings shed light on the reg
ulatory role of TFs in placentation, fetal-maternal cross-talk, and early 
embryonic development. Therefore, the rewiring of major regulators 
unveiled here suggests a differential modulation of gene expression, 
leading to tissue-specific functions essential to placenta development. 

3.4. The transcriptomic profile of CAR and COT highlights tissue-specific 
functions 

To shed light on the biological processes and KEGG pathways un
derlying the tissue-specific functions, we carried out not only the func
tional analysis of DEGs and TFs but also the clustered genes. Supporting 
the differential expression analysis findings, the k-means approach 
retrieved four clusters that highlighted the high and low gene expression 
between the tissues. Based on our findings, it seems that the Wnt 
pathway is repressed in COT at day 83 of pregnancy. Similar results were 
reported in buffaloes [13] and cattle [24]. The DKK4 and CTNNBIP1 

genes that are negative regulators of Wnt [13,51] were upregulated in 
COT. Conversely, the positive regulator WNT10A [52] was down
regulated. Other Wnt members, such as WNT4 and WNT7B that were 
reported as important for the implantation process [53], were found 
upregulated in COT. Additionally, WNT7A was upregulated in COT 
while its targets were downregulated. The WNT7A gene is involved with 
the female Müllerian duct development and is a regulator of the 
HOXA10 and HOXA11 TFs, which modulate receptivity and implanta
tion [54,55]. Altogether, the expression of canonical and non-canonical 
Wnt genes reinforces the role of this pathway in placental development 
during early gestation and suggests different regulatory mechanisms. 

Another interesting observation was the changes in gene expression 
associated with tissue remodeling and structure. Tissue-related path
ways over-represented in our study included ECM receptor interaction, 
focal adhesion, regulation of actin cytoskeleton, and adherens junction. 
The placentomal growth requires extensive tissue remodeling from early 
pregnancy to postpartum [2]. These changes seem to be more dramatic 
in CAR, as most of the genes underlying the aforementioned pathways 
were downregulated or less expressed in COT. Marked contrasting 
changes in gene expression patterns between COT and CAR included 
MMP and PAG families, which were down and upregulated in COT, 
respectively. PAGs are aspartic endopeptidases exclusively synthesized 
by the trophoblastic giant cells and are important mediators of processes 
related to maternal recognition of pregnancy [56]. Immunomodulatory 
actions and proteolytic activity have been suggested as potential roles of 
PAGs [57]. Lotfan et al. [13] reported increased PAG expression in the 
cotyledon of pregnant buffalos. Other gene families downregulated in 
COT included collagen, cadherins, integrins, and cathepsins. Together, 
these results pinpoint the key role of genes in remodeling the feto- 
maternal placental units. 

In addition to the structural changes during placental development, 
maternal immune tolerance must be established for a successful preg
nancy [58]. Among our findings, the CD74 and CFI genes were down
regulated in COT. These genes were suggested as responsible for 
maintaining an immunosuppressive environment to avoid the rejection 
of the fetus [13]. Conversely, cytokines with pleiotropic effects, such as 
IL-6 and IL-27, were upregulated in COT. Although IL-6 has been asso
ciated with tissue remodeling, hematopoiesis, and inflammation 
response [59], high levels of maternal IL-6 lead to maternal immune 
activation, which negatively affects fetal brain development [60]. On 
the other hand, IL-27 has been suggested as a regulator of local immune 
response and angiogenesis during pregnancy [58]. Further, supporting 
an immunosuppressive environment, we found genes coding the bovine 
leukocyte antigen (BOLA, BOLA-DRA, BOLA-DMA, and BOLA-DMB) and 
complement systems downregulated in COT. According to Dabrowska 
et al. [61], the BOLA system mediates immune tolerance during preg
nancy. Likewise, the complement cascade is pivotal for a normal preg
nancy, as its dysregulation has adverse effects for both the dam and the 
offspring [62]. Supporting the role of the DEGs in modulating the dif
ferences of immune function between CAR and COT, our approach 
retrieved several over-represented pathways, including complement and 
coagulation cascades, leukocyte transendothelial migration, phag
osome, and antigen processing and presentation. 

4. Conclusion 

Based on a multi-tiered approach, our study revealed a complex and 
intricate gene network underlying the differences between fetal and 
maternal tissues. Furthermore, transcription factors play a key role in 
modulating the gene expression between tissues. Likewise, pathways 
related to nutrient transport, tissue differentiation and remodeling, and 
immune tolerance are pivotal for fetal-maternal cross-talk, successful 
implantation, and fetal development. 
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5. Material and methods 

All experiments and methods complied with the ARRIVE guidelines 
and were approved by the North Dakota State University Institutional 
Animal Care and Use Committee (IACUC A19012). 

5.1. Animals, tissue collection, and RNA isolation 

The gravid uteri of seven pregnant Angus-cross heifers carrying fe
male fetuses were collected through ovariohysterectomy at day 83 ± 2 
of gestation. This time point is the end of the first trimester, and the 
placenta is still growing exponentially [63]. Likewise, there is an 
increased gene expression related to the still increasing fetal nutrient 
demand and the still developing placental structure [64]. Additionally, 
fetal organogenesis has already finished and the secondary myogenesis 
is beginning [65]. Thus, the first trimester is critical not only for 
placental development and later “functional capacity” of the placenta 
but also for fetal development. 

The cotyledon (COT) and caruncle (CAR) from a large placentome 
close to the fetus were manually dissected [42], snap-frozen, and stored 
at − 80 ◦C. The heifers used in this study were part of the control group 
(NoVTM_LG) of a much larger experiment described elsewhere [40,64]. 

Total RNA was isolated from COT and CAR tissues using the 
RNeasy® kit (Qiagen®, Germantown, MA, USA) followed by on-column 
DNase treatment, according to the manufacturer’s protocol. The Agilent 
2100 Bioanalyzer and agarose gel electrophoresis were used for mRNA 
quality control. Only samples with RIN values greater than 6 were 
sequenced (RIN average = 7.8). 

5.2. Sequencing and data analysis 

Sequencing and data quality control were performed as previously 
described by Diniz et al. [64]. Briefly, strand-specific RNA libraries (n =
14, 7 per tissue) were prepared using the NEBNext® Ultra™ II Direc
tional RNA Library Prep Kit for Illumina (New England BioLabs®, Ips
wich, MA, USA). Paired-end 150-bp reads at a depth of 20 M reads/ 
sample were sequenced on the Illumina® NovaSeq 600 platform. Library 
preparation and sequencing were performed at Novogene Co. (Nanjing, 
China). 

Prior to statistical analysis, raw reads were assessed for quality 
control using FastQC v0.11.8 [66] and MultiQC v1.9 [67]. Reads with a 
PhredScore lower than 30, sequencing adaptors, low-complexity reads, 
and reads containing low-quality bases were filtered out. Read mapping 
was based on the ARS-UCD 1.2 Bos taurus reference genome and the 
gene annotation file (release 100) retrieved from the Ensembl database. 
The raw counts per gene were retrieved with the –quantMode Gene
Counts option from the STAR aligner v. 2.7.3a [68] while mapping. Post- 
mapping quality control was performed using MultiQC, NOISeq v.2.26.0 
[69], and edgeR v.3.24.0 [70] software. 

5.3. Differential expression analysis and identification of key 
transcription factors 

Read counts from STAR were used as input for data quality control 
and differential expression analysis performed on the RStudio v.1.1.442 
environment for R v.3.5.1. [71,72]. The filterByExpr function from the R- 
package edgeR was used to filter out lowly or not expressed genes. Genes 
with expression values lower than 1 count per million in 50% of the 
samples were filtered out. 

Further, differential gene expression analysis was performed using 
DESeq2 v.1.22.1 [73] by contrasting COT vs. CAR. As the heifers used in 
this trial were born in two different farms, we used a multi-factor design 
(~ farm + tissue) when performing DESeq2 analysis. P-values were 
adjusted (padj) based on the Benjamini–Hochberg procedure for false 
discovery rate (FDR) implemented in the DESeq2 package. Genes were 
considered differentially expressed when the FDR ≤ 0.05 and abs 

(log2FC) ≥ 1. 
The Regulatory Impact Factor (RIF) algorithm RIF1 and RIF2 [17] 

were used to identify TFs potentially regulating gene expression be
tween CAR and COT tissues. The RIF algorithm was implemented based 
on the source code available from Reverter et al. [17] and as described 
by Diniz et al. [74]. To identify putative regulators, 1396 bovine TFs 
were downloaded from the Animal Transcription Factor Database (An
imal TFDB v3.0) [18]. The list of TFs was overlapped with the genes 
from the CAR and COT datasets and those not expressed were filtered 
out. After filtering, 863 TFs were contrasted to the list of DEGs, 
comparing COT vs. CAR tissues. TFs with RIF1 or RIF2 z-scores |1.96| 
were considered significant [17]. 

5.4. k-means clustering and co-expression network analyses 

An unsupervised clustering approach was adopted to identify 
expression patterns in the data and group genes with similar behavior 
between tissues. To this end, the gene count data was normalized 
through the VST function from DESeq2 and used as input for the iDEP 
v.9.2 [75]. In the clustering analysis, 14,312 genes were sorted by 
standard deviation (SD), and the top 4000 were selected (SD ≥ 0.4). 
Genes were mean-centered and then hierarchically clustered using 
Pearson’s correlation as distance metrics. Data exploratory analysis and 
visualization were performed on iDEP as well. 

The co-expression profile of gene pairs for CAR and COT tissues was 
created based on the partial correlation and information theory (PCIT) 
algorithm [22]. For gene network inference, the DEGs and the signifi
cant key TFs were used to create CAR and COT networks separately. 
Significantly co-expressed pairs were selected when a TF was present 
and showed a partial correlation greater than |0.8| (p < 0.05). Hub 
genes were selected based on the connectivity (K) (2 SD from the mean, 
p ≤ 0.05) retrieved from the Cytoscape Network Analyzer tool v.2.79 
[76], as reported elsewhere [74]. Cytoscape v.3.8.2 [77] was used for 
network visualization. 

To explore the differences in gene connectivity between tissues, the 
DK for each gene in the networks was measured [74]. The K for each 
gene was standardized by dividing the gene connectivity by the 
maximum connectivity in the network [23]. Then, the DK index was 
defined as DKi = KCAR(i) – KCOT(i). The DK index was transformed into 
a z-score, and values located ±1.96 SD from the mean were considered 
significant (p ≤ 0.05). 

5.5. Functional over-representation analysis 

To gain biological insights on the roles of the DEGs, TFs, and co- 
expressed genes, a functional over-representation analysis was per
formed. A three-tiered approach was taken to detect differences in BP 
and KEGG pathways involved in the CAR and COT function. First, the 
WebGestalt web tool [78] was used for BP functional analysis of up and 
downregulated genes separately. Second, a cluster analysis framework 
based on the ClueGo v.2.5. 7 [19] plug-in for Cytoscape retrieved the 
KEGG pathways underlying DEGs and TFs. Finally, functional analysis of 
gene clusters identified through k-means was performed using iDEP. 
Significant over-represented BP and KEGG pathways were identified 
after p-value multiple testing adjustments (FDR ≤ 0.05). The B. taurus 
annotation was used as background for over-representation analysis. 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.ygeno.2022.110274. 

Data availability 

All relevant data are within the paper and its Supplementary Infor
mation files. All RNA-sequencing data is publicly available on NCBI’s 
Gene Expression Omnibus through GEO Series accession number 
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ated and analyzed during this study are available from the 
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