849 research outputs found

    Two-photon double ionization of atomic beryllium with ultrashort laser pulses

    Full text link
    We investigate the two-photon double ionization of beryllium atom induced by ultrashort pulses. We use a time-dependent formalism to evaluate the ionization amplitudes and generalized cross sections for the ejection of the 2s2 valence shell electrons in the presence of a fully occupied 1s2 frozen core shell. The relative contributions of the two-photon direct and sequential process are systematically explored by varying both pulse duration and central frequency. The energy and angular differential ionization yields reveal the signatures of both mechanisms, as well as the role of electron correlation in both the single and double ionization continua. In contrast with previous results on the helium atom, the presence of an electronic core strongly affects the final state leading to back-to-back electron emission even in the a priori less correlated two-photon sequential mechanism. In particular, a dominant pathway via excitation ionization through the Be+(2p) determines the profiles and pulse-duration dependencies of the energy and angle differential yieldsThis material contains work performed at Lawrence Berkeley National Laboratory supported by the US Department of Energy Office of Science, Office of Basic Energy Sciences, Division of Chemical Sciences Contract DE-AC02-05CH11231, and work at the University of California Davis supported by US Department of Energy Grant No. DESC0007182. Work at Cal Maritime is supported by the National Science Foundation, Grant No. PHY-1509971. Work at the Autónoma de Madrid was supported by the Advanced Grant of the European Research Council XCHEM 290853, the European grants MC-ITN CORINF and MC-RG ATTOTREND FP7-PEOPLE-268284, the European COST Action XLIC CM1204, the MINECO Project No. FIS2013-42002-R and the ERA-Chemistry Project PIM2010EEC-00751. We acknowledge computer time at the Centro de Computación Científica CCC-UAM and MareNostrum from Barcelona Supercomputing Cente

    One health research in Northern Tanzania – challenges and progress

    Get PDF
    East Africa has one of the world’s fastest growing human populations—many of whom are dependent on livestock—as well as some of the world’s largest wildlife populations. Humans, livestock, and wildlife often interact closely, intimately linking human, animal, and environmental health. The concept of One Health captures this interconnectedness, including the social structures and beliefs driving interactions between species and their environments. East African policymakers and researchers are recognising and encouraging One Health research, with both groups increasingly playing a leading role in this subject area. One Health research requires interaction between scientists from different disciplines, such as the biological and social sciences and human and veterinary medicine. Different disciplines draw on norms, methodologies, and terminologies that have evolved within their respective institutions and that may be distinct from or in conflict with one another. These differences impact interdisciplinary research, both around theoretical and methodological approaches and during project operationalisation. We present experiential knowledge gained from numerous ongoing projects in northern Tanzania, including those dealing with bacterial zoonoses associated with febrile illness, foodborne disease, and anthrax. We use the examples to illustrate differences between and within social and biological sciences and between industrialised and traditional societies, for example, with regard to consenting procedures or the ethical treatment of animals. We describe challenges encountered in ethical approval processes, consenting procedures, and field and laboratory logistics and offer suggestions for improvement. While considerable investment of time in sensitisation, communication, and collaboration is needed to overcome interdisciplinary challenges inherent in One Health research, this can yield great rewards in paving the way for successful implementation of One Health projects. Furthermore, continued investment in African institutions and scientists will strengthen the role of East Africa as a world leader in One Health research

    Hepatocellular adenoma in men:A nationwide assessment of pathology and correlation with clinical course

    Get PDF
    BACKGROUND & AIMS: Hepatocellular adenomas (HCA) rarely occur in males, and if so, are frequently associated with malignant transformation. Guidelines are based on small numbers of patients and advise resection of HCA in male patients, irrespective of size or subtype. This nationwide retrospective cohort study is the largest series of HCA in men correlating (immuno)histopathological and molecular findings with the clinical course. METHODS: Dutch male patients with available histological slides with a (differential) diagnosis of HCA between 2000 and 2017 were identified through the Dutch Pathology Registry (PALGA). Histopathology and immunohistochemistry according to international guidelines were revised by two expert hepatopathologists. Next generation sequencing (NGS) was performed to confirm hepatocellular carcinoma (HCC) and/or subtype HCA. Final pathological diagnosis was correlated with recurrence, metastasis and death. RESULTS: A total of 66 patients from 26 centres fulfilling the inclusion criteria with a mean (±SD) age of 45.0 ± 21.6 years were included. The diagnosis was changed after expert revision and NGS in 33 of the 66 patients (50%). After a median follow‐up of 9.6 years, tumour‐related mortality of patients with accessible clinical data was 1/18 (5.6%) in HCA, 5/14 (35.7%) in uncertain HCA/HCC and 4/9 (44.4%) in the HCC groups (P = .031). Four B‐catenin mutated HCA were identified using NGS, which were not yet identified by immunohistochemistry and expert revision. CONCLUSIONS: Expert revision with relevant immunohistochemistry may help the challenging but prognostically relevant distinction between HCA and well‐differentiated HCC in male patients. NGS may be more important to subtype HCA than indicated in present guidelines

    BRCA2 polymorphic stop codon K3326X and the risk of breast, prostate, and ovarian cancers

    Get PDF
    Background: The K3326X variant in BRCA2 (BRCA2*c.9976A>T; p.Lys3326*; rs11571833) has been found to be associated with small increased risks of breast cancer. However, it is not clear to what extent linkage disequilibrium with fully pathogenic mutations might account for this association. There is scant information about the effect of K3326X in other hormone-related cancers. Methods: Using weighted logistic regression, we analyzed data from the large iCOGS study including 76 637 cancer case patients and 83 796 control patients to estimate odds ratios (ORw) and 95% confidence intervals (CIs) for K3326X variant carriers in relation to breast, ovarian, and prostate cancer risks, with weights defined as probability of not having a pathogenic BRCA2 variant. Using Cox proportional hazards modeling, we also examined the associations of K3326X with breast and ovarian cancer risks among 7183 BRCA1 variant carriers. All statistical tests were two-sided. Results: The K3326X variant was associated with breast (ORw = 1.28, 95% CI = 1.17 to 1.40, P = 5.9x10- 6) and invasive ovarian cancer (ORw = 1.26, 95% CI = 1.10 to 1.43, P = 3.8x10-3). These associations were stronger for serous ovarian cancer and for estrogen receptor–negative breast cancer (ORw = 1.46, 95% CI = 1.2 to 1.70, P = 3.4x10-5 and ORw = 1.50, 95% CI = 1.28 to 1.76, P = 4.1x10-5, respectively). For BRCA1 mutation carriers, there was a statistically significant inverse association of the K3326X variant with risk of ovarian cancer (HR = 0.43, 95% CI = 0.22 to 0.84, P = .013) but no association with breast cancer. No association with prostate cancer was observed. Conclusions: Our study provides evidence that the K3326X variant is associated with risk of developing breast and ovarian cancers independent of other pathogenic variants in BRCA2. Further studies are needed to determine the biological mechanism of action responsible for these associations

    Genetic association study of QT interval highlights role for calcium signaling pathways in myocardial repolarization.

    Get PDF
    The QT interval, an electrocardiographic measure reflecting myocardial repolarization, is a heritable trait. QT prolongation is a risk factor for ventricular arrhythmias and sudden cardiac death (SCD) and could indicate the presence of the potentially lethal mendelian long-QT syndrome (LQTS). Using a genome-wide association and replication study in up to 100,000 individuals, we identified 35 common variant loci associated with QT interval that collectively explain ∼8-10% of QT-interval variation and highlight the importance of calcium regulation in myocardial repolarization. Rare variant analysis of 6 new QT interval-associated loci in 298 unrelated probands with LQTS identified coding variants not found in controls but of uncertain causality and therefore requiring validation. Several newly identified loci encode proteins that physically interact with other recognized repolarization proteins. Our integration of common variant association, expression and orthogonal protein-protein interaction screens provides new insights into cardiac electrophysiology and identifies new candidate genes for ventricular arrhythmias, LQTS and SCD

    A prognostic neural epigenetic signature in high-grade glioma

    Get PDF
    Neural-tumor interactions drive glioma growth as evidenced in preclinical models, but clinical validation is limited. We present an epigenetically defined neural signature of glioblastoma that independently predicts patients' survival. We use reference signatures of neural cells to deconvolve tumor DNA and classify samples into low- or high-neural tumors. High-neural glioblastomas exhibit hypomethylated CpG sites and upregulation of genes associated with synaptic integration. Single-cell transcriptomic analysis reveals a high abundance of malignant stemcell-like cells in high-neural glioblastoma, primarily of the neural lineage. These cells are further classified as neural-progenitor-cell-like, astrocyte-like and oligodendrocyte-progenitor-like, alongside oligodendrocytes and excitatory neurons. In line with these findings, high-neural glioblastoma cells engender neuron-to-glioma synapse formation in vitro and in vivo and show an unfavorable survival after xenografting. In patients, a high-neural signature is associated with decreased overall and progression-free survival. High-neural tumors also exhibit increased functional connectivity in magnetencephalography and resting-state magnet resonance imaging and can be detected via DNA analytes and brain-derived neurotrophic factor in patients' plasma. The prognostic importance of the neural signature was further validated in patients diagnosed with diffuse midline glioma. Our study presents an epigenetically defined malignant neural signature in high-grade gliomas that is prognostically relevant. High-neural gliomas likely require a maximized surgical resection approach for improved outcomes

    Upper limits on the strength of periodic gravitational waves from PSR J1939+2134

    Get PDF
    The first science run of the LIGO and GEO gravitational wave detectors presented the opportunity to test methods of searching for gravitational waves from known pulsars. Here we present new direct upper limits on the strength of waves from the pulsar PSR J1939+2134 using two independent analysis methods, one in the frequency domain using frequentist statistics and one in the time domain using Bayesian inference. Both methods show that the strain amplitude at Earth from this pulsar is less than a few times 102210^{-22}.Comment: 7 pages, 1 figure, to appear in the Proceedings of the 5th Edoardo Amaldi Conference on Gravitational Waves, Tirrenia, Pisa, Italy, 6-11 July 200

    Improving the sensitivity to gravitational-wave sources by modifying the input-output optics of advanced interferometers

    Get PDF
    We study frequency dependent (FD) input-output schemes for signal-recycling interferometers, the baseline design of Advanced LIGO and the current configuration of GEO 600. Complementary to a recent proposal by Harms et al. to use FD input squeezing and ordinary homodyne detection, we explore a scheme which uses ordinary squeezed vacuum, but FD readout. Both schemes, which are sub-optimal among all possible input-output schemes, provide a global noise suppression by the power squeeze factor, while being realizable by using detuned Fabry-Perot cavities as input/output filters. At high frequencies, the two schemes are shown to be equivalent, while at low frequencies our scheme gives better performance than that of Harms et al., and is nearly fully optimal. We then study the sensitivity improvement achievable by these schemes in Advanced LIGO era (with 30-m filter cavities and current estimates of filter-mirror losses and thermal noise), for neutron star binary inspirals, and for narrowband GW sources such as low-mass X-ray binaries and known radio pulsars. Optical losses are shown to be a major obstacle for the actual implementation of these techniques in Advanced LIGO. On time scales of third-generation interferometers, like EURO/LIGO-III (~2012), with kilometer-scale filter cavities, a signal-recycling interferometer with the FD readout scheme explored in this paper can have performances comparable to existing proposals. [abridged]Comment: Figs. 9 and 12 corrected; Appendix added for narrowband data analysi

    Search for gravitational wave bursts in LIGO's third science run

    Get PDF
    We report on a search for gravitational wave bursts in data from the three LIGO interferometric detectors during their third science run. The search targets subsecond bursts in the frequency range 100-1100 Hz for which no waveform model is assumed, and has a sensitivity in terms of the root-sum-square (rss) strain amplitude of hrss ~ 10^{-20} / sqrt(Hz). No gravitational wave signals were detected in the 8 days of analyzed data.Comment: 12 pages, 6 figures. Amaldi-6 conference proceedings to be published in Classical and Quantum Gravit
    corecore