90 research outputs found

    A Somatostatin Receptor Subtype-3 (SST3) Peptide Agonist Shows Antitumor Effects in Experimental Models of Nonfunctioning Pituitary Tumors

    Get PDF
    [Purpose] Somatostatin analogues (SSA) are efficacious and safe treatments for a variety of neuroendocrine tumors, especially pituitary neuroendocrine tumors (PitNET). Their therapeutic effects are mainly mediated by somatostatin receptors SST2 and SST5. Most SSAs, such as octreotide/lanreotide/pasireotide, are either nonselective or activate mainly SST2. However, nonfunctioning pituitary tumors (NFPTs), the most common PitNET type, mainly express SST3 and finding peptides that activate this particular somatostatin receptor has been very challenging. Therefore, the main objective of this study was to identify SST3-agonists and characterize their effects on experimental NFPT models.[Experimental Design] Binding to SSTs and cAMP level determinations were used to screen a peptide library and identify SST3-agonists. Key functional parameters (cell viability/caspase activity/chromogranin-A secretion/mRNA expression/intracellular signaling pathways) were assessed on NFPT primary cell cultures in response to SST3-agonists. Tumor growth was assessed in a preclinical PitNET mouse model treated with a SST3-agonist. [Results] We successfully identified the first SST3-agonist peptides. SST3-agonists lowered cell viability and chromogranin-A secretion, increased apoptosis in vitro, and reduced tumor growth in a preclinical PitNET model. As expected, inhibition of cell viability in response to SST3-agonists defined two NFPT populations: responsive and unresponsive, wherein responsive NFPTs expressed more SST3 than unresponsive NFPTs and exhibited a profound reduction of MAPK, PI3K-AKT/mTOR, and JAK/STAT signaling pathways upon SST3-agonist treatments. Concurrently, SSTR3 silencing increased cell viability in a subset of NFPTs. [Conclusions] This study demonstrates that SST3-agonists activate signaling mechanisms that reduce NFPT cell viability and inhibit pituitary tumor growth in experimental models that expresses SST3, suggesting that targeting this receptor could be an efficacious treatment for NFPTs.This work has been funded by the following grants: Junta de Andalucía [CTS-1406 (R.M. Luque), BIO-0139 (J.P. Castaño)]; Ministerio de Ciencia, Innovación y Universidades [BFU2016-80360-R (J.P. Castaño)] and Instituto de Salud Carlos III, co-funded by European Union [ERDF/ESF, “Investing in your future”: PI16/00264 (R.M. Luque), CP15/00156 (M.D. Gahete) and CIBERobn]. CIBER is an initiative of Instituto de Salud Carlos III

    Therapeutic and Prognostic Implications of BRAF V600E in Pediatric Low-Grade Gliomas.

    Get PDF
    Purpose BRAF V600E is a potentially highly targetable mutation detected in a subset of pediatric low-grade gliomas (PLGGs). Its biologic and clinical effect within this diverse group of tumors remains unknown. Patients and Methods A combined clinical and genetic institutional study of patients with PLGGs with long-term follow-up was performed (N = 510). Clinical and treatment data of patients with BRAF V600E mutated PLGG (n = 99) were compared with a large international independent cohort of patients with BRAF V600E mutated-PLGG (n = 180). Results BRAF V600E mutation was detected in 69 of 405 patients (17%) with PLGG across a broad spectrum of histologies and sites, including midline locations, which are not often routinely biopsied in clinical practice. Patients with BRAF V600E PLGG exhibited poor outcomes after chemotherapy and radiation therapies that resulted in a 10-year progression-free survival of 27% (95% CI, 12.1% to 41.9%) and 60.2% (95% CI, 53.3% to 67.1%) for BRAF V600E and wild-type PLGG, respectively ( P \u3c .001). Additional multivariable clinical and molecular stratification revealed that the extent of resection and CDKN2A deletion contributed independently to poor outcome in BRAF V600E PLGG. A similar independent role for CDKN2A and resection on outcome were observed in the independent cohort. Quantitative imaging analysis revealed progressive disease and a lack of response to conventional chemotherapy in most patients with BRAF V600E PLGG. Conclusion BRAF V600E PLGG constitutes a distinct entity with poor prognosis when treated with current adjuvant therapy

    Therapeutic and Prognostic Implications of BRAF V600E in Pediatric Low-Grade Gliomas

    Get PDF
    Purpose BRAF V600E is a potentially highly targetable mutation detected in a subset of pediatric low-grade gliomas (PLGGs). Its biologic and clinical effect within this diverse group of tumors remains unknown. Patients and Methods A combined clinical and genetic institutional study of patients with PLGGs with long-term follow-up was performed (N = 510). Clinical and treatment data of patients with BRAF V600E mutated PLGG (n = 99) were compared with a large international independent cohort of patients with BRAF V600E mutated-PLGG (n = 180). Results BRAF V600E mutation was detected in 69 of 405 patients (17%) with PLGG across a broad spectrum of histologies and sites, including midline locations, which are not often routinely biopsied in clinical practice. Patients with BRAF V600E PLGG exhibited poor outcomes after chemotherapy and radiation therapies that resulted in a 10-year progression-free survival of 27% (95% CI, 12.1% to 41.9%) and 60.2% (95% CI, 53.3% to 67.1%) for BRAF V600E and wild-type PLGG, respectively (P < .001). Additional multivariable clinical and molecular stratification revealed that the extent of resection and CDKN2A deletion contributed independently to poor outcome in BRAF V600E PLGG. A similar independent role for CDKN2A and resection on outcome were observed in the independent cohort. Quantitative imaging analysis revealed progressive disease and a lack of response to conventional chemotherapy in most patients with BRAF V600E PLGG. Conclusion BRAF V600E PLGG constitutes a distinct entity with poor prognosis when treated with current adjuvant therapy. (C) 2017 by American Society of Clinical Oncolog

    Pattern of Relapse and Treatment Response in WNT- Activated Medulloblastoma

    Get PDF
    Over the past decade, wingless-activated (WNT) medulloblastoma has been identified as a candidate for therapy de-escalation based on excellent survival; however, a paucity of relapses has precluded additional analyses of markers of relapse. To address this gap in knowledge, an international cohort of 93 molecularly confirmed WNT MB was assembled, where 5-year progression-free survival is 0.84 (95%, 0.763-0.925) with 15 relapsed individuals identified. Maintenance chemotherapy is identified as a strong predictor of relapse, with individuals receiving high doses of cyclophosphamide or ifosphamide having only one very late molecularly confirmed relapse (p = 0.032). The anatomical location of recurrence is metastatic in 12 of 15 relapses, with 8 of 12 metastatic relapses in the lateral ventricles. Maintenance chemotherapy, specifically cumulative cyclophosphamide doses, is a significant predictor of relapse across WNT MB. Future efforts to de-escalate therapy need to carefully consider not only the radiation dose but also the chemotherapy regimen and the propensity for metastatic relapses

    WNT activation by lithium abrogates TP53 mutation associated radiation resistance in medulloblastoma

    Get PDF
    TP53 mutations confer subgroup specific poor survival for children with medulloblastoma. We hypothesized that WNT activation which is associated with improved survival for such children abrogates TP53 related radioresistance and can be used to sensitize TP53 mutant tumors for radiation. We examined the subgroup-specific role of TP53 mutations in a cohort of 314 patients treated with radiation. TP53 wild-type or mutant human medulloblastoma cell-lines and normal neural stem cells were used to test radioresistance of TP53 mutations and the radiosensitizing effect of WNT activation on tumors and the developing brain. Children with WNT/TP53 mutant medulloblastoma had higher 5-year survival than those with SHH/TP53 mutant tumours (100% and 36.6% +/- 8.7%, respectively (p < 0.001)). Introduction of TP53 mutation into medulloblastoma cells induced radioresistance (survival fractions at 2Gy (SF2) of 89% +/- 2% vs. 57.4% +/- 1.8% (p < 0.01)). In contrast, beta-catenin mutation sensitized TP53 mutant cells to radiation (p < 0.05). Lithium, an activator of the WNT pathway, sensitized TP53 mutant medulloblastoma to radiation (SF2 of 43.5% +/- 1.5% in lithium treated cells vs. 56.6 +/- 3% (p < 0.01)) accompanied by increased number of.H2AX foci. Normal neural stem cells were protected from lithium induced radiation damage (SF2 of 33% +/- 8% for lithium treated cells vs. 27% +/- 3% for untreated controls (p = 0.05). Poor survival of patients with TP53 mutant medulloblastoma may be related to radiation resistance. Since constitutive activation of the WNT pathway by lithium sensitizes TP53 mutant medulloblastoma cells and protect normal neural stem cells from radiation, this oral drug may represent an attractive novel therapy for high-risk medulloblastomas.B.R.A.I.N Child Canada; Cancer Research UK; Brain Tumour Charity; Hungarian Brain Research Program [KTIA_13_NAP-A-V/3]; Janos Bolyai Scholarship of the Hungarian Academy of Sciences [TAMOP-4.2.2. A-11/1/KONV-2012-0025]; German Cancer Aid/Dr. Mildred Scheel Foundation for Cancer Research; Cure Childhood Cancer Foundation; St. Baldrick's Foundation; Southeastern Brain Tumor Foundation; Action Medical Research; [CZ.1.05/2.1.00/03.0101]; [CZ.1.07/2.3.00/20.0183

    Pineoblastoma segregates into molecular sub-groups with distinct clinico-pathologic features: a Rare Brain Tumor Consortium registry study

    Get PDF
    Pineoblastomas (PBs) are rare, aggressive pediatric brain tumors of the pineal gland with modest overall survival despite intensive therapy. We sought to define the clinical and molecular spectra of PB to inform new treatment approaches for this orphan cancer. Tumor, blood, and clinical data from 91 patients with PB or supratentorial primitive neuroectodermal tumor (sPNETs/CNS-PNETs), and 2 pineal parenchymal tumors of intermediate differentiation (PPTIDs) were collected from 29 centres in the Rare Brain Tumor Consortium. We used global DNA methylation profiling to define a core group of PB from 72/93 cases, which were delineated into five molecular sub-groups. Copy number, whole exome and targeted sequencing, and miRNA expression analyses were used to evaluate the clinico-pathologic significance of each sub-group. Tumors designated as group 1 and 2 almost exclusively exhibited deleterious homozygous loss-of-function alterations in miRNA biogenesis genes (DICER1, DROSHA, and DGCR8) in 62 and 100% of group 1 and 2 tumors, respectively. Recurrent alterations of the oncogenic MYC-miR-17/92-RB1 pathway were observed in the RB and MYC sub-group, respectively, characterized by RB1 loss with gain of miR-17/92, and recurrent gain or amplification of MYC. PB sub-groups exhibited distinct clinical features: group 1–3 arose in older children (median ages 5.2–14.0 years) and had intermediate to excellent survival (5-year OS of 68.0–100%), while Group RB and MYC PB patients were much younger (median age 1.3–1.4 years) with dismal survival (5-year OS 37.5% and 28.6%, respectively). We identified age

    Caractérisation des fonctions neuroprotectives des interfaces sang-cerveau au cours du développement normal, dans les tumeurs périventriculaires et dans un modèle d’excitotoxicité périnatale

    No full text
    Blood-brain interfaces including blood-brain barrier (BBB), choroid plexuses (CP) or circumventricular organs (CVO) are physiological barriers required for brain homeostasis. These barriers are “physical”, with tight junctions, and “enzymatic”. Though long considered immature in fetuses, these barriers are present from an early stage of development. Their characteristics and their properties are largely unknown in humans. Our work demonstrates that CP express tight junction-associated proteins claudins (CLDN) 1, 2, and 3 at early stages of development in rat and human. This expression is dynamic during development as shown by the progressive increase of CLDN2 immunopositivity that may follow increase in cerebrospinal fluid secretion. CLDN 1 and 3 are identified in human fetal subcommissural organ (SCO), one of the CVO. CLDN5 is early expressed in rat and human BBB and its expression is disrupted by excitotoxic injury. Our work also shows that CLDN immunohistochemical profile is useful in tumoral pathology, notably to better understand and diagnose tumors arising from CP or the SCO. Finally, various antioxidant and detoxifying enzymes such as the microsomal epoxide hydrolase are expressed at 22 weeks of gestation in the human fetus, mainly in CP. These results suggest a high detoxifying capacity for the CP during development in humansLes interfaces sang-cerveau comme la barrière hémato-encéphalique (BHE), les plexus choroïdes (PC) ou les organes circumventriculaires (OCV), constituent des barrières physiologiques nécessaires au fonctionnement du système nerveux central. Ces barrières sont à la fois « physiques », constituées de jonctions serrées, et « enzymatiques ». Longtemps considérées comme immatures chez le fœtus, ces barrières sont en réalité présentes précocement au cours du développement. Leurs caractéristiques et leurs propriétés restent peu connues chez l'homme. Nos travaux montrent que les PC expriment, précocement au cours du développement, des protéines de jonction serrée, les claudines (CLDN) 1, 2 et 3 chez le rat et chez l'homme. Cette expression est dynamique au cours du développement avec une apparition progressive de la CLDN2 pouvant avoir un lien avec la sécrétion du liquide céphalo-rachidien. Les CLDN 1 et 3 sont identifiées chez le fœtus humain au niveau de l'organe sous-commissural (OSC), un des OCV. La CLDN5 est exprimée précocement au niveau de la BHE chez le rat et chez l'homme et son expression est altérée dans un modèle d'excitotoxicité néonatale. Nos travaux montrent également que l'analyse du profil des CLDN est utile en pathologie tumorale notamment dans la compréhension et le diagnostic de tumeurs développées à partir des PC ou de l'OSC. Enfin, diverses enzymes antioxydantes et de détoxification dont l'époxyde hydrolase microsomale sont exprimées à 22 semaines d'aménorrhée principalement au niveau des PC du fœtus humain. Ces données suggèrent des capacités de détoxification des PC, d'installation précoce au cours du développement chez l'homm

    Characterization of the neuroprotective functions of blood-brain interfaces during normal development, in periventricular tumors and in a model of perinatal excitotoxic injury

    No full text
    Les interfaces sang-cerveau comme la barrière hémato-encéphalique (BHE), les plexus choroïdes (PC) ou les organes circumventriculaires (OCV), constituent des barrières physiologiques nécessaires au fonctionnement du système nerveux central. Ces barrières sont à la fois « physiques », constituées de jonctions serrées, et « enzymatiques ». Longtemps considérées comme immatures chez le fœtus, ces barrières sont en réalité présentes précocement au cours du développement. Leurs caractéristiques et leurs propriétés restent peu connues chez l'homme. Nos travaux montrent que les PC expriment, précocement au cours du développement, des protéines de jonction serrée, les claudines (CLDN) 1, 2 et 3 chez le rat et chez l'homme. Cette expression est dynamique au cours du développement avec une apparition progressive de la CLDN2 pouvant avoir un lien avec la sécrétion du liquide céphalo-rachidien. Les CLDN 1 et 3 sont identifiées chez le fœtus humain au niveau de l'organe sous-commissural (OSC), un des OCV. La CLDN5 est exprimée précocement au niveau de la BHE chez le rat et chez l'homme et son expression est altérée dans un modèle d'excitotoxicité néonatale. Nos travaux montrent également que l'analyse du profil des CLDN est utile en pathologie tumorale notamment dans la compréhension et le diagnostic de tumeurs développées à partir des PC ou de l'OSC. Enfin, diverses enzymes antioxydantes et de détoxification dont l'époxyde hydrolase microsomale sont exprimées à 22 semaines d'aménorrhée principalement au niveau des PC du fœtus humain. Ces données suggèrent des capacités de détoxification des PC, d'installation précoce au cours du développement chez l'hommeBlood-brain interfaces including blood-brain barrier (BBB), choroid plexuses (CP) or circumventricular organs (CVO) are physiological barriers required for brain homeostasis. These barriers are “physical”, with tight junctions, and “enzymatic”. Though long considered immature in fetuses, these barriers are present from an early stage of development. Their characteristics and their properties are largely unknown in humans. Our work demonstrates that CP express tight junction-associated proteins claudins (CLDN) 1, 2, and 3 at early stages of development in rat and human. This expression is dynamic during development as shown by the progressive increase of CLDN2 immunopositivity that may follow increase in cerebrospinal fluid secretion. CLDN 1 and 3 are identified in human fetal subcommissural organ (SCO), one of the CVO. CLDN5 is early expressed in rat and human BBB and its expression is disrupted by excitotoxic injury. Our work also shows that CLDN immunohistochemical profile is useful in tumoral pathology, notably to better understand and diagnose tumors arising from CP or the SCO. Finally, various antioxidant and detoxifying enzymes such as the microsomal epoxide hydrolase are expressed at 22 weeks of gestation in the human fetus, mainly in CP. These results suggest a high detoxifying capacity for the CP during development in human
    corecore