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Abstract 

Pineoblastoma (PB) are rare, aggressive pediatric brain tumors of the pineal gland with modest 

overall survival despite intensive therapy. We sought to define the clinical and molecular spectra of PB 

to inform new treatment approaches for this orphan cancer. Tumor, blood, and clinical data from 91 

patients with PB or supratentorial primitive neuroectodermal tumor (sPNETs/CNS-PNETs), and 2 

pineal parenchymal tumors of intermediate differentiation (PPTIDs) were collected from 29 centres in 

the Rare Brain Tumor Consortium. We used global DNA methylation profiling to define a core group 

of PB from 72/93 cases, which were delineated into five molecular subgroups. Copy number, whole 

exome and targeted sequencing, and miRNA expression analyses were used to evaluate the clinico-

pathologic significance of each subgroup. Tumors designated as group 1 and 2 almost exclusively 

exhibited deleterious homozygous loss of function alterations in miRNA biogenesis genes (DICER1, 

DROSHA, and DGCR8) in 62 and 100% of group 1 and 2 tumors respectively. Recurrent alterations of 

the oncogenic MYC-miR-17/92-RB1 pathway were observed in the RB and MYC subgroup, 

respectively characterized by RB1 loss with gain of miR-17/92, and recurrent gain or amplification of 

MYC. PB sub-groups exhibited distinct clinical features: group 1-3 arose in older children (median ages 

5.2-14.0 years) and had intermediate to excellent survival (5-year OS of 68.0-100%), while Group RB 

and MYC PB patients were much younger (median age 1.3-1.4 years) with dismal survival (5-year OS 

37.5% and 28.6%, respectively). We identified age <3 years at diagnosis, metastatic disease, omission 

of upfront radiation, and chr 16q loss as significant negative prognostic factors across all PBs. Our 

findings demonstrate that PB exhibit substantial molecular heterogeneity with sub-group associated 

clinical phenotypes and survival. In addition to revealing novel biology and therapeutics, molecular 

sub-grouping of PB can be exploited to reduce treatment intensity for patients with favorable biology 

tumors. 

Keywords: pineoblastoma, PNET, PPTID, miRNA, RB, MYC  
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Introduction 

Malignant brain tumors are the leading cause of pediatric cancer-related death and disability. 

Embryonal brain tumors (EBTs) are the largest group of brain tumors diagnosed in children 0-14 years 

old and comprise 20% of all pediatric brain neoplasms [47]. Although historically classified based on 

tumor location and similar primitive neuroectodermal tumor (PNET) histology [24], EBTs are known 

to comprise a spectrum of molecular diseases with distinct clinico-pathologic features [8]. 

Medulloblastoma (MB) which represents 60% of childhood EBTs has been most studied, while rare 

EBTs, which comprise ~40% of EBTs are understudied and poorly understood. These include atypical 

rhabdoid/teratoid tumors (ATRTs), embryonal tumors with multilayered rosettes (ETMRs), as well as 

pineoblastoma (PB) - all historically treated as high-risk brain tumors with intensified regimens 

[30,29].  

PBs comprise 30% of all pineal region tumors and may be difficult to distinguish from other 

tumors including germ cell tumors, high-grade gliomas, ATRTs, ETMRs and lower-grade pineal 

parenchymal tumors of intermediate differentiation (PPTIDs) [32]. PB have been grouped in clinical 

and biological studies with other EBTs arising in cerebral locations, called supratentorial primitive 

neuro-ectodermal tumors (sPNETs or CNS-PNETs) [42]. As there are few dedicated PB studies, the 

clinical and molecular spectra, and best treatment approach for these highly malignant tumors remains 

to be established. A recent large clinical retrospective study indicated radiotherapy (RT) but not high-

dose chemotherapy (HDC) improved survival of PB patients ≥4 years old [45], although prospective 

consortia studies show improved survival for older children with intensified multi-modal approaches 

[29,27,11]. Historical sPNET studies also reported 5-yr OS of 50-65% for older children with pineal 

region EBTs, while patients < 3-5 years old had poorer 5-yr OS of 15-40% [30,20]. Whether these 

observations reflect age-related treatment biases or biological differences remain unknown. 

Limited animal modeling data [57] and clinical studies of heritable “tri-lateral” retinoblastoma 

[14,6] suggest a role for RB1 and related tumor suppressor pathways in PB. In addition, miRNA 
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biogenesis gene defects have also been recently implicated in PBs [15,58]. MiRNAs which are critical 

post-transcriptional regulators, undergo complex processing by endonucleases (DROSHA, DGCR8, 

and DICER1) into mature miRNAs that function in RNA-induced silencing complexes (RISC) [37]. 

Although, several small studies have reported DICER1 and DROSHA alterations in PB, the spectrum of 

RB and miRNA biogenesis alterations and their clinical significance in PBs remains to be fully 

evaluated. In this study, we integrated global DNA methylation profiling, copy number, and whole 

exome (WES) and targeted sequencing analyses on a large cohort of PB patients enrolled in a rare brain 

tumor registry to investigate the molecular and clinic-pathologic spectrum of PB. 

 

Materials and Methods 

Tumor, blood, and clinical data 

Tumor tissue, blood, and clinical data from 93 patients diagnosed with PB, related 

sPNETs/CNS-PNETs, or PPTID were collected from 29 centres as part of the global Rare Brain Tumor 

Consortium biorepository and clinical registry (rarebraintumorconsortium.ca) using procedure 

approved by Research Ethic Board at the Hospital for Sick Children and participating institutions 

(Supplementary Table 1, online resource) . All cases were diagnosed at their referring institutions. 

Available pathology reports and prepared slides were all reviewed by an experienced pediatric 

neuropathologist. Six of these cases have previously been analyzed by Affymetrix 100K single-

nucleotide polymorphism (SNP) array and reported by Miller et al.[42]. DNA from frozen tissue or 

formalin-fixed, paraffin-embedded materials, and blood were extracted using the Qiagen AllPrep 

DNA/RNA Mini kit (Qiagen, Germany), and total RNA from 6 tumors was prepared with nCounter 

miRNA prep kit according to standard protocol. 

 

Molecular and bioinformatic analyses 
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Tumor DNA was analysed on the Illumina HumanMethylation450 or MethylationEPIC 

methylation arrays (Illumina, San Diego, CA) as described previously (www.tcag.ca) [64,59] and 

5000-15,000 most variable probes (standard deviation >0.3) were used for all downstream analyses (R 

v3.3.1). Tumor types were determined using unsupervised cluster analyses of methylation data against 

1200 reference tumor profiles [59]. 

For t-distributed stochastic neighbor embedding, default parameters were used, except for 

perplexity = 10 (Rtsne v0.15, R v3.5.3). For hierarchal clustering, 1-Pearson correlation was used for 

distance measuring, with average linkage (pheatmap R package, R v3.61). k-means clustering was 

performed with Euclidean for distance measuring, and average linkage (ConsensusClusterPlus R 

package). Non-matrix factorization (NMF) analysis was performed with ranks (k) 2-10 at 100 runs 

(NMF v0.20.6). Tumor copy number profiles were determined using Conumee (version 1.8.0) and 

GISTIC2 (v2.0.23) [41] analyses on methylation and Illumina Omni SNP array. 

WES analysis was performed on the Illumina HiSeq 4000 platform (Genome Quebec, TCAG), 

with variant calling using the Mutek2 pipeline (Ontario Institute for Cancer Research). Targeted 

sequencing was performed on the Ion Torrent platform using custom primers (Thermo Fisher 

Scientific) and the Ion Reporter variant calling pipeline (Genome Quebec, ResourcePath) [41]. 

Mutations were called deleterious or potentially deleterious based respectively on calls by both or one 

of the Sorting Intolerant From Tolerant (SIFT) (<0.05) or Polyphen-2 (>0.909) tool scores [66,1].  

MiRNA expression was determined based on the NanoString miRNA panel (NanoString Technologies 

Inc.) [59] for available tumor-derived miRNA.  

 

Statistical analyses 

Event-free survival (EFS) was defined as interval between time of diagnosis to first event: tumor 

recurrence or progression, death from any cause, or last follow-up for those without events. Overall 

survival (OS) was defined as interval between time of diagnosis and death from any cause or last 
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follow-up. Survival and prognostic factor analyses were performed on cases treated with curative intent 

and for which complete treatment and outcome information were available. Survival estimates were 

performed using Kaplan-Meier method with 95% CI, with log-rank testing used for comparisons. 

Fisher exact and Kruskal-Wallis analyses were used to evaluate association of specific clinical features 

(age, tumor location, stage) with PB sub-groups, while univariate Cox proportional hazards regression 

modelling was used to identify clinical and treatment prognostic factors. All statistical analyses were 

performed in R v3.6.1. 

 

Results 

PB segregates into five molecular subgroups with distinct copy number profiles 

Global methylation data from 93 tumors diagnosed as PB, sPNETs/CNS-PNETs, or PPTID 

were analysed against a reference cohort of 1200 pediatric brain tumors [59] using unsupervised 

orthogonal clustering (t-distributed stochastic neighbour embedding, NMF, K-means and hierarchal 

clustering) analyses (Fig. 1a, b). Attributable to the difficulty in diagnosing PB, 21/93 cases clustered 

with other tumor entities (11 germ cell tumor, 5 ATRTs, 2 MB, 2 high-grade glioma, 1 ETMR), and 

were excluded from further analysis. The remaining 72 tumors which segregated in one distinct cluster 

were further characterized using NMF, hierarchal clustering, and K-means clustering which revealed 5 

robust sub-groups with highest co-phenetic co-efficient score at k=5 (Supplementary Fig. 1, online 

resource). We designated these as group 1, 2, 3, RB, and MYC PB sub-groups, respectively consisting 

of 21, 11, 13, 9, and 18 tumors, based on specific copy number and mutational features described 

below.  

To further investigate PBs sub-groups, we performed copy number analyses using Conumee 

and GISTIC2 analyses on methylation and SNP array data (Fig. 2a), which revealed few significant 

overlapping copy number alterations except for chr 16 loss seen in all but group 3 PBs. Group 1 tumors 

most frequently exhibited broad gains of chr 7 (5/21; 24%) and chr 12 (6/21; 29%) and losses of chr 16 
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(5/21; 24%) and 22q (6/21; 29%). More detailed analysis revealed 14% (3/21) of group 1 tumors 

exhibited recurrent loss of a minimal 1.4Mb region on chr 5p13.3 encompassing DROSHA, which 

mediates primary-miRNA processing (Fig. 2b). In group 2 tumors, DNA methylation (Fig. 2c) and 

SNP array (Supplementary Fig. 2a, online resource) data showed broad chr 14q (9/11; 82%) losses 

where miRNA endonuclease gene DICER1 maps, and focal homozygous DROSHA loss in one sample. 

Additionally, group 2 tumors exhibited loss of chr 8 (5/11; 45%), 16 (3/11; 27%), and 20 (3/11; 27%). 

In contrast, group 3 PB had no significant recurrent copy number alterations except for chr13q loss in 

3/13 (23%) samples (Fig. 2d).  

In the fourth designated RB sub-group, methylation and SNP arrays showed recurrent losses of 

a focal 0.6Mb chr 13q14.2 region spanning RB1 in 56% (5/9) of samples (Fig. 3a; Supplementary Fig. 

2b, online resource); 80% (4/5) of these also harbored focal gains of a 1.9Mb chr13q13.3 region 

spanning the miR-17/92 oncogene previously implicated in retinoblastoma [12]. Nanostring expression 

profiling on a cohort of 6 primary PBs indicated copy number driven miR-17/92 expression in a group 

RB PB (RBTC746), without significant changes in expression of paralogous loci, miR-106b/25 and 

miR-106a/363, or the unrelated let-7 locus (Fig. 3b). The RB sub-group also exhibited broad chr 1q 

(3/9; 33%) and 6p (5/9; 55%) gains and chr 16 losses (7/9; 78%) (Fig. 3a). The fifth sub-group, 

designated as the MYC PB, exhibited recurrent focal gains (7/18; 39%) or amplification (2/18; 11%) of 

a 1.2 Mb chr 8q24.21 segment encompassing MYC and chr 16q losses (8/18; 44%) (Fig. 3c).  

 

miRNA biogenesis defects, RB1 loss, and MYC activation characterize PB sub-groups  

To extend our copy number analyses we performed WES for 11 samples and targeted 

sequencing of DICER1, DROSHA, DGCR8, XPO5, TARBP2, RB1, and TP53 for 48 tumor and 21 
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matched blood samples with limited materials; 2 additional tumors and 2 blood samples only had 

materials sufficient for targeted DICER1 and TP53 sequencing only.  

 Sequencing analyses revealed mutually exclusive recurrent, deleterious, loss of function 

mutations of DICER1, DROSHA, or DGCR8 almost exclusively in group 1 and 2 PBs (Fig. 4a). 

Significantly 11/15 DICER1, 6/8 DROSHA and 3/3 DGCR8 alterations were novel cancer mutations 

not reported in COSMIC (https://cancer.sanger.ac.uk/cosmic) (Table 1). Of 15 unique DICER1 

mutations in 16 PBs, 11 were nonsense/frameshift and 4 were missense mutations. Truncating DICER1 

mutations were located within or prior to the RNase IIIb domain, while missense mutations mapped to 

the RNase IIIb and Helicase domains. DROSHA mutations, which were distributed throughout the 

gene, were also predominantly truncating (5/8), while only 1/3 DGCR8 mutations was predicted to be 

truncating. Less common alterations included two novel, potentially deleterious missense mutations of 

XPO5, which functions in pre-miRNA export. No alterations in TARBP2, a DICER miRNA loading 

complex gene, mutated in a spectrum of cancers [21,16], were seen in our PB cohort. Significantly, we 

also identified germline DICER1 mutation in 5 patients and a potential deleterious missense germline 

DROSHA mutation (RBTC717, c.199C>A; p.P67T) in one patient. Of note, all DICER1 mutations in 

group 1 (6/6) and 2 (9/9) PBs were accompanied by deleterious somatic DICER1 mutations or 

heterozygous chr 14q loss, variant allele frequency >96%, or complete chr14q loss. Similarly, three 

tumors with DGCR8 mutations, both in groups 1 and 2 PBs, also exhibited chr 22q loss. Collectively 

our data shows critical miRNA biogenesis genes are targeted by copy number alterations and/or 

mutations in 62 (13/21) and 100% (11/11) respectively of group 1 and 2 PBs (Fig. 4). 

 Targeted sequencing of ten group 3 PB did not reveal any miRNA biogenesis genes, RB1 or 

TP53 alterations. Interestingly, additional WES analyses of group 3 PB samples revealed 2/8 

(RBTC786 and -793) harbored similar in-frame insertions (c.935_936insCGTGGG and  

c.937_938insGCCGTG, respectively) in KBTBD4, which encodes a Cul3 E3 ubiquitin ligase adaptor, 
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resulting in a p.P311_R312dup affecting the Kel substrate binding domain (Supplementary Fig. 3, 

online resource) [7]. While the c.937_938insGCCGTG mutation has recently been proposed to be a 

marker for PPTIDs [35], both cases of PPTID in our cohort, which were group 3 tumors, did not have 

this alteration on WES [18]. While both our tumors with this mutation were institutionally diagnosed as 

PB, they had lower Ki67 labeling indices (Supplementary Table 2, online resource) more consistent 

with PPTID based on values reported by Fèvre-Montange et al. [18]. Examining all group 3 tumors 

diagnosed as PB, Ki67 scores were at the threshold between PPTID and PB (mean 19.2%, range 10-

40%). In total, group 3 tumors (mean 16.6%, range 3-40%) had significantly lower Ki67 scores than 

tumors belonging to other groups (mean 39.6%, range 10-75%) (p=0.003 by Kruskal-Wallis test). 

In contrast to group 1 and 2 tumors, sequencing of 22 RB and MYC sub-group PBs revealed 

only two potentially deleterious DICER1 mutations without evident LOH, one each in a MYC 

(RBTC779, c.1468N>T; p.R490C) and a RB subgroup (RBTC758, c.5240C>T; p.S1747L) tumor. 

Consistent with copy number analyses, sequencing revealed 3/8 (38%) RB sub-group tumors had 

recurrent stop-gain RB1 (p.R320* and p.Q121*) mutations previously reported in other cancers 

including retinoblastoma [39,22]. Amongst the RB subgroup patients, one (RBTC1231) presented in 

the context of tri-lateral retinoblastoma for which confirmatory germline testing could not be 

performed. Targeted sequencing of 21 blood samples, including 5 from RB subgroup patients, did not 

reveal any additional RB1 germline mutations. Notably, we did not identify somatic or germline TP53 

mutations in 48 PBs and 10 matched blood DNA samples sequenced.  

PB subgroups have distinct clinico-pathologic features  

Although PB predominantly arises in children, we observed a wide range of ages from six 

months to 60 years among 61/72 patients with available data, with 87% of patients <18 yrs of age, and 

children <3yrs comprising 28% of all patients (Supplementary Table 3, online resource).  Comparison 

of clinical features showed no gender bias in the entire cohort (p=0.127) although, there was a 
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predominance of females and males respectively in the RB (1 male:3.5 female) and MYC (2.6 male: 1 

female) group of patients (Table 2).  While children with group 1-3 PBs had respective median ages of 

5.2, 12.5, and 14.0 years at diagnosis, the RB and MYC group patients were much younger with 

median ages of 1.3 and 1.4 years respectively (p<0.0001) (Fig. 5a). Staging data available for 54 

patients indicated 39% (21/54) of primary PB were metastatic; 20/21 patients presented with M3/M4 

disease, and only one with M1 disease. Incidence of metastases at diagnosis differed significantly 

across PB groups (p= 0.028) with group 2 and RB group patients respectively exhibiting the lowest 

(13% M2; 1/8 patients) and highest incidence (100% M3; 5/5 patients) of metastases (Fig. 5b).   

46/72 PB patients were treated with curative intent and had complete treatment and outcome 

information available (Table 2). Univariate analyses revealed age <3yrs as a significant negative 

prognostic factor for EFS (HR 3.1, CI 1.3-7.4, p=0.008) and OS (HR 3.8, CI 1.4-10.1, p=0.008).  EFS 

(HR 2.7, CI 1.2-6.3; p=0.017) and OS (HR 3.6, CI 1.3-9.7, p=0.012) were also significantly inferior in 

patients with metastatic disease at diagnosis. Patients who did not receive upfront RT also had inferior 

EFS (HR 6.5, CI 2.7-15.6, p<0.001) but not OS (HR 2.3, CI 0.8-6.7, p=0.115), while receipt of 

conventional chemotherapy only vs. HDC, and extent of surgery were not significantly associated with 

EFS or OS. As PB patients <3yrs are often treated without RT or with delayed RT regimens, we also 

examined prognostic factors stratified by age <3 and ≥3yrs at diagnosis. These analyses showed no 

significant prognostic factors except a trend toward poorer EFS with conventional dose chemotherapy 

compared to HDC among 11 children <3yrs, while metastatic disease remained a significant negative 

prognostic factor for OS (HR 4.3; 95% CI 1.1-16.7; p=0.035) but not for EFS in children >3yrs of age 

at diagnosis.  

Kaplan-Meier survival analyses for all PB patients treated with curative intent revealed 5-yr 

EFS and OS respectively of 48.1 and 65.0%. Consistent with our Cox proportional hazards regression 

model, patients < 3 yrs, metastatic disease at diagnosis, and who were not treated with upfront RT had 

significantly poorer survival. The 5-yr EFS and OS for patients stratified by ≥ 3 vs. < 3 yrs of age were 
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58.2% vs. 18.2% (p=0.005) and 77.0% vs. 24.2%, (p=0.005) respectively (Supplementary Fig. 4a, 

online resource), while patients with localized and metastatic disease had 5-yr EFS and OS of 60.5% 

vs. 29.4% (p=0.012) and 78.7% vs. 44.8% (p=0.008) respectively. Patients treated with and without 

upfront RT had respective 5yr EFS of 58.8% vs 10% (p<0.0001), while upfront RT was also associated 

with a trend towards improved survival: 5-yr OS for patients who received upfront RT was 71% vs. 

40% for patients who did not receive upfront RT (p=0.106) (Supplementary Fig. 4b-c, online resource).  

In addition to clinical risk factors, our analyses indicated PB survival also correlated with 

molecular features of tumors. Notably, EFS differed significantly across the five molecular subgroups 

of PB (p=0.009) while OS trended toward significance (p=0.096), with group 2 PB patients exhibiting 

a striking 100% 5-yr EFS/OS (Fig. 5d). In contrast, the RB and MYC sub-groups of PB, which 

correlated with youngest age at diagnosis and highest frequency of chr 16q loss, had the lowest 5-yr 

EFS/OS of only 25%/37.5% and 14.3%/28.6%, respectively (Table 2). Because chr 16q loss was 

associated with these high-risk groups but also seen recurrently in groups 1 and 2, we analyzed whether 

it was independently associated with poorer outcomes. Indeed, across all cases, those with chr 16q loss 

compared to unaltered chr 16q were associated respectively with 16.1% vs. 63.0% 5yr-EFS (p=0.015) 

while OS were respectively 47.0% vs. 72.4% (p=0.139) (Supplementary Fig. 5, online resource). 

Collectively our data suggest distinct tumor biology are associated with different clinical risk features 

and may contribute significantly to disparate treatment-related outcomes in PBs. 

 

Discussion  

PBs are high-risk brain tumors with only modest long-term survival despite multi-modal 

intensive regimens and for which there remains limited data to inform novel therapeutic approaches 

[20,29,45,27,11]. Here we performed an integrated molecular and clinic-pathologic analyses of a large 

cohort and demonstrate PBs comprise 5 molecular sub-groups with distinct clinico-pathologic and 

survival features. Group 1 and 2 PB which arise in older children exhibit recurrent miRNA biogenesis 
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gene defects; group 3 PB which affects adolescents and adults exhibit few alterations, while the RB and 

MYC sub-groups affecting children age <18 months harbor RB1 and MYC alterations. Our data 

indicate age <3yrs, metastases at diagnosis and tumor molecular features as important determinants of 

survival in PB patients (summarized in Fig. 6) and provide an important framework for prospective 

studies.  

Strikingly, we identified deleterious mutations in multiple components of the miRNA 

processing machinery almost exclusively in group 1 and 2 PBs. Consistent with association of PBs 

with DICER1 predisposition syndrome [15,58], we identified germline and somatic DICER1 mutations 

in addition to somatic DROSHA and DGCR8 mutations, which have not been reported in PBs to date. 

With the exception of reported nonsense mutations [15] in RBTC717 and -745, all of the DICER1 

mutations identified in our study were novel and those in group 1 PB most commonly affected the 

RNase IIIb domain which selectively processes 5p miRNA [26]. Interestingly, imbalanced abundance 

of 5p versus 3p miRNAs due to RNase IIIb domain mutations have been implicated as important 

oncogenic mechanisms [28,3,53]. In contrast, mutations in group 2 tumors affecting both RNase 

domains were predicted to completely impair miRNA maturation, as reported in Wilm’s tumors [54]. 

Group 1 and 2 PBs with DICER1 mutations exhibited LOH as reported in smaller PB studies [15,58]. 

This is in stark contrast to DICER1 mutations in other tumors, where LOH is rare and truncating 

germline mutations are associated with hotspot missense mutation of the RNase IIIb domain [19]. In 

PBs, the second hit appears to be either chr 14q loss or a second truncating mutation of both RNase 

domains. Interestingly, murine tumors with bi-allelic Dicer1 knockout appear to be selected against 

[33] suggesting PB tumors likely retain some residual DICER1 activity, either through conserved 

RNase IIIa domain (in group 1) or other aberrant functions not involving the RNase domains (in group 

2). The unique pattern of DICER1 somatic and germline mutations observed in our cohort suggest 

specificity of the second hit in the formation of this tumor. 
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We identified truncating and damaging missense mutations of both DROSHA and DGCR8, but 

at much lower frequency than DICER1. As these mutations were seen only in group 1 and 2 PBs, and 

in only 10% (6/59) of tumors in our study, it is perhaps not surprising that DROSHA and DGCR8 

mutations were not reported in recent WES or whole genome sequencing studies of 19 PBs [60,35]. 

DROSHA mutations are frequent in Wilm’s tumors, where > 70% are missense mutations at E1147 in 

the RNase IIIb domain [68,67]. Although the IIIa and b domains respectively processes the 3p and 5p 

arms of pri-miRNA, the reported missense mutations do not appear to cause an imbalance in 5p and 3p 

mature miRNAs, but may act via dominant-negative mechanisms to globally downregulate miRNA 

production [54,65]. Our findings suggest miRNA maturation may also be globally downregulated in a 

subset of group 1 and 2 PBs via homozygous loss or biallelic truncating mutations of several critical 

miRNA endonucleases. All DGCR8 mutations in our PB samples were accompanied by chr 22 loss or 

LOH, similar to LOH in Wilms tumors with hotspot DGCR8 dsRBD mutations that impair mature 

miRNA expression [65,67,68]. Interestingly, one group 1 PB (RBTC757) exhibited loss of chr 22 copy 

in the context of the chr 22q11.2 deletion syndrome (22q11.2DS, DiGeorge syndrome). The minimal 

chr 22q11.2DS region which encompasses DGCR8 has also been linked to two prior cases of PB 

[46,61,34], and suggest DGCR8 loss may predispose to PB. 

Although heritable retinoblastoma is associated with increased risk for PB [43], RB1 alterations 

have not been described in sporadic PB. In the RB subgroup, we observed recurrent RB1 homozygous 

loss or inactivating stop-gain mutation with LOH consistent with a classic two-hit mechanism. 

Associated with RB1 loss, we observed recurrent copy number gains of chr 13q31.3 which 

encompasses the oncogenic miR-17/92 cluster. In Rb/p107-deficient mice, miR-17/92 overexpression 

drives retinoblastoma formation by targeting Cdkn1a (p21/Cip1) to increase retinal cell proliferation 

[12], an oncogenic process that requires intact Dicer1 function [48] and may explain the paucity of 

miRNA biogenesis gene mutations in the RB sub-group of PBs. Of note we observed that MYC, which 

is also known to drive neoplastic growth by upregulating miR-17/92 [36], was recurrently 
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gained/amplified in the MYC PB sub-group. These observations suggest common oncogenic 

mechanisms driven by a MYC-miR-17/92-RB1 axis [55,56] may underlie the aggressive biological 

features seen in these PB subgroups 

 KBTBD4 is a member of a large family of Bric-a-brac/Tramtrack/Broad (BTB) complex-

containing adaptor proteins that complex with CUL3 E3 ubiquitin ligase and serve as a bridge between 

CUL3 and its substrate via a kelch interaction domain [10,7]. Substrates are then ubiquitinated and 

marked for degradation in the ubiquitin proteasome pathway. Hotspot mutations affecting the kelch 

domain have been reported in group 3 and 4 MB [49], and three cases of PPTID [35], and have been 

proposed as an oncogenic driver. While the targeted substrate of KBTBD4 has not been demonstrated, 

similar mutations in other BTB proteins that affect the substrate-binding domain or cause loss-of-

function have been reported in a variety of cancers [10]. For example, in prostate cancer, androgen 

receptor signaling is implicated in tumor initiation and progression, as well as development of 

resistance to anti-androgen therapy [9]. Mutations affecting the androgen receptor-binding domain of 

BTB protein SPOP [5] leads to the failure of ubiquitination by CUL3 and thus, enhanced androgen 

receptor signaling [2]. Our WES analyses identified hotspot kelch domain mutations in 2/8 sequenced 

group 3 tumors. Although both these cases, diagnosed as PB, had lower Ki67/MIB-1 proliferation 

indices more consistent with PPTIDs [18], we did not observe this alteration in our two cases of PPTID 

or other group 3 PBs. While the hotspot KBTBD4 mutation have been proposed to be a marker for 

PPTID [35], our data suggests this mutation is characteristic for at least some group 3 tumors rather 

than exclusively all PPTIDs. With the caveat that Ki67/MIB-1 scores can be subjective and variable 

depending on tumor sample size, our review of scores in our cohort suggest group 3 is mainly 

composed of PBs with lower Ki67 indices in the range of PPTIDs, and tumors diagnosed as PPTIDs. 

Thus, tumors diagnosed as PPTID may be biologically similar to a proportion of PBs based on their 

shared global DNA methylation profile and silent chromosomal copy number landscape. Alternatively, 

some PPTIDs may be mis-diagnosed as PBs. 
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We observed on univariate analysis that loss of chr 16q was a significant negative prognostic 

marker for EFS and trending toward significance for OS. Interestingly, in another childhood embryonal 

cancer, Wilm’s tumor, chr 16q loss is also an established independent negative prognostic marker for 

relapse and death, and is being used to risk stratify patients with favorable histology tumors for 

intensified therapy [25]. Whether the loss-of-heterozygosity (LOH) of chr 16q disrupts a putative tumor 

suppressor or is a result of greater genomic instability remains to be elucidated for Wilm’s tumor. 

Some groups have proposed that LOH 16q may involve the effects of tumor-associated genes E2F4, 

COX4 [50], and CTCF [44], which all reside on chr 16q. We did not see mutations affecting these 

genes in our limited WES. 

 However, RB family tumor suppressor RBL2 (p130) also resides on 16q and is inactivated or 

lost in multiple cancers, including retinoblastoma [4,62,13,69,52]. We found that group RB and MYC 

tumors are characterized by chr 16q loss and an oncogenic MYC-miR-17/92-RB1 axis. Interestingly, in 

pancreatic adenocarcinoma, high expression of one member of the miR-17/92 cluster, miR-17-5p, 

directly targets RBL2 to inhibit RBL2-mediated repression of E2F4 target genes (MYC, CCND1, JUN), 

thereby enhancing proliferation [69]. RBL2 targeting is also seen in ovarian carcinoma via 

overexpression of miR-17/92 paralog miR-106a [38]. RBL2 could be similarly targeted by loss of chr 

16q in PB. However, we did not observe RBL2 mutations in our limited WES, nor that chr 16q loss and 

miR-17/92 gain/amplification were mutually exclusive. Further studies will have to be completed to 

fully characterize the MYC-miR-17/92-RB axis and the role of RBL2 in PB. 

 

Clinical studies of PBs to date have been limited by its rarity and lack of large, disease specific 

prospective cohorts. The recently completed Children’s Oncology Group high-risk EBT trial 

ACNS0332, enrolled 34 patients >3yrs, however separate clinical and molecular analyses of the PB 

cohort has not been reported [29]. Our clinical findings are limited by the retrospective nature of our 

registry-based cohort, and relatively smaller numbers compared to other studies of far more common 
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childhood EBTs. Indeed, only recently have two clinical analyses with larger numbers, both 

retrospective, been published: a single institution study of 41 patients from St. Jude Research Hospital 

[51] and a pooled analysis of 135 patients from SIOP-E and US Head Start trial groups [45]. No 

previous published study has yet performed a combined molecular and clinical analysis as we have 

sought to do here. The clinical applicability of our findings will likely require further validation 

through continued collaboration with other research groups to pool enough data to power subgroup-

specific risk stratification and inform therapy.  

Nonetheless, consistent with prior studies [31,23,40,63,51,45], we identified young age at 

diagnosis (<3 yrs), metastatic disease, and omission of upfront RT as negative prognostic factors for 

PB survival. Also in agreement with published observations [51,45,17] our analysis did not reveal 

prognostic correlations with HDC or extent of surgery across all PB patients, although there was a 

trend toward improved EFS in children <3yrs who received HDC. 

 In contrast to the excellent outcome in group 2 PB (5-yr OS 100%), groups 1 and 3 patients had 

intermediate outcomes (68.0 and 80%), while groups RB and MYC patients had poorest outcomes 

(37.5 and 28%). Metastatic disease and chr 16 loss, which correlate with poorer survival across the 

entire cohort, was also enriched in group 1, RB, and MYC PBs, thus suggesting adverse molecular and 

clinical risk features may account partly for the poorer outcomes of these patients.  

While the difference in EFS and OS between group 2 and 3 is due to just one group 3 patient 

who recurred then died from disease, another group 3 patient was only treated with palliative 

chemotherapy and thus not included in our intent-to-treat analysis. Both patients had extra-CNS (M4) 

metastasis at diagnosis. In contrast, of nine patients with group 2 tumors and clinical data, two were 

excluded from our intent-to-treat analysis: one who refused treatment, and another who died from 

intraoperative complications. No treated patients recurred or died. These differences in clinical features 

between the two groups not captured by intent-to-cure only EFS/OS estimates have led us to assign 

group 2 a superior prognosis to group 3.   
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The impact of different age-related therapeutic approaches likely contributes to differences in 

outcomes across PB patients. Indeed, we observed a significant difference in proportion of patients 

<3yrs (4/11; 36.4%) vs. those ≥3yrs of age at diagnosis (33/36; 91.7%; p<0.001) who received upfront 

RT, suggesting RT avoidance may play a role in adverse outcomes seen in younger patients who 

primarily had group 1, RB and MYC PB. Of note, group 2 and 3 PB had the highest median age at 

diagnosis, including three patients >20yrs of age who were alive at last follow-up after therapy that 

included only up-front RT. In contrast, two adult patients >20yrs at diagnosis who had group 1 and 

MYC tumors, both died despite receiving multimodal therapy including CSI, suggesting intensive 

therapy may not completely negate adverse tumor biology. Despite the prognostic impact of RT 

demonstrated by our study and that of others, it is also interesting to note that 5/29 long term survivors 

in our cohort who never received radiation therapy were young patients with group 1 (2 patients), MYC 

(2 patients), and RB (1 patient) PBs.  

Our integrative molecular and clinico-pathologic analyses in this study which has identified five 

distinct molecular sub-groups of PB has provided important new insights into the pathogenesis of PB 

and confirm the importance of cancer predisposition related to miRNA biogenesis and RB1 gene 

defects in PB patients.  Our study indicates groups 1-3 PBs patients treated with contemporary multi-

modality regimens have intermediate to excellent outcomes but also highlight critical treatment gaps 

for younger PB patients most susceptible to radiation-related toxicities. Although our retrospective 

study has limitations, it represents one of the largest integrated clinical and molecular analyses of PB to 

date and provides new and critical information to inform therapy reduction in prospective clinical trials 

for favorable risk patients and development of novel therapies for high risk patients. 
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Figure and Tables Legends 

 

Figure 1 PB comprise five molecular sub-groups 

a. Flow diagram of analyses performed: 93 primary tumors with institutional diagnosis of 

pineoblastoma (PB) or supratentorial PNET (sPNET) were analysed using global methylation profiling 

and compared against a reference cohort of 1200 pediatric brain tumors to identify and exclude samples 

that segregated with other brain tumors. A cluster of robust, molecularly confirmed 72 PBs were 

further characterized using methylation and SNP arrays for copy number alterations, mutational 

analyses using WES and targeted sequencing, and Nanostring analyses for miRNA expression. 

Clinical, treatment, and molecular sub-group data available for 46 PB patients treated with curative 

intent were integrated for clinic-pathologic analyses.  

b. t-Distributed stochastic neighbour embedding (tSNE) plots of DNA methylation clustering patterns 

of 93 presumed PB samples relative to 951/1200 representative pediatric brain tumor entities 

demonstrate PB clusters separately from other tumor entities. Plots using the top 12,500 most varying 

methylation probes by standard deviation (SD) are shown. Tumors are shown as colored spheres which 

include atypical teratoid rhabdoid tumor (ATRT), ependymoma posterior-fossa (EP_PF) or 

supratentorial, RELA-fusion (EP_RELA), embryonal tumor multiple rosettes (ETMR), germ cell tumor 

(GCT), high-grade glioma (HGG), neuroblastoma (NB), medulloblastoma WNT (MB_WNT), SHH 

(MB_SHH), group 3 (MB_G3), and group 4 (MB_G4). Black spheres indicate tumors with an 

institutional diagnosis of PB that segregated with other known brain tumor entities are (n=21). A robust 

cluster of 72 PBs is boxed; blow-up image of PB cluster on right shows five molecular PB sub-groups 

designated as 1, 2, 3, RB, and MYC.  

 

Figure 2 PB molecular subgroups have distinct copy number landscapes 
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a. Pattern of copy number alterations across PB molecular sub-groups as determined using GISTIC 

analyses of global methylation data. Chromosomal regions with recurrent copy number gains (green) or 

losses (red) significantly enriched within each PB sub-group are highlighted; asterisk indicates false 

discovery rate of q<0.05.  

b, c. Composite circos plots of global methylation profiles showing recurrent copy number gains 

(green) and losses (red) in 21 group 1 and 11 group 2 PBs. Focal or broad alterations associated with 

miRNA biogenesis loci DICER1, DROSHA and DGRC8 are highlighted. Higher resolution copy 

number profiles generated using Conumee, of representative group 1 and group 2 samples with 

respective focal chr 5p13.3 targeting DROSHA and chr 14q loss associated with DICER1, are shown on 

the right.  

 d. Composite circos plot of global methylation profiles in 13 group 3 PBs. Higher resolution copy 

number profile generated using Conumee of a representative group 3 sample is shown on right.  

 

Figure 3 Recurrent copy number alterations in RB and MYC sub-group PBs 

a. Composite circos plot of global methylation profiles from 9 RB subgroup PBs depicting recurrent 

copy number gains (green) and losses (red); recurrent copy number alterations associated with miR-

17/92 and RB1 are highlighted. Higher resolution copy number profile of a representative tumor RBTC 

1546 with homozygous loss of RB1 at chr13q14.2 and copy number gain encompassing miR-17/92 at 

chr 13q31.3 is shown on right.  

b. Copy number driven expression of miR-17/92 in RB sub-group PB. MiRNA expression levels for 

the miR-17-92, paralogous miR106a-363, miR-106b-25 and unrelated let-7 loci was determined from 

NanoString(v.3) miRNA expression data from 6 PBs. Plots show relative, normalized probe intensities 
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of miRNAs in PB sub-groups; miRNA expression levels of RBTC746 with focal chr13q13.3 copy 

number gains targeting miR-17-92 shown in Figure A, is highlighted.  

c.  Composite circos plot of global methylation profiles from 18 MYC subgroup PBs. Recurrent focal 

chr 8q amplification/gains (green) and chr 16q losses (red) are highlighted. Higher resolution copy 

number profile of a representative tumor, RBTC 1520, with focal MYC amplification is shown on right. 

 

Figure 4 Recurrent mutations/alterations of miRNA biogenesis genes, RB1 and MYC characterize 

PB sub-groups.  

a. Summary of mutations and copy number alterations associated with miRNA biogenesis gene 

(DICER1, DROSHA, DGCR8, XPO5, TARBP2), KBTBD2, RB1, miR-17/92, and MYC determined 

using a combination of targeted sequencing, WES,  methylation and SNP array based copy number 

analyses in individual PBs of different sub-groups with tumor and matched blood DNA available for 

study. Samples lacking materials for specific assay are indicated by (-); broad copy number alterations 

determined by methylation or SNP-based copy number analyses are indicated by HT (heterozygous), 

HM (homozygous), n (normal diploid) or presence (Y) of MYC focal gains or amplification (α) is 

indicated. Status or specific gene alterations determined by targeted sequencing or WES is indicated as 

wt (wild-type); * (stop-gain mutation), fs (frameshift insertion or deletion), † (deleterious missense 

mutation predicted by SIFT and Polyphen2). All predicted truncating gene mutations are highlighted.  

b. Schema of DICER1 and DROSHA mutations relative to maps of corresponding proteins. Type and 

location of mutations are shown as colored symbols relative to amino acid sequence numbers and 

known or predicted functional domains; colors of mutation symbols correspond to tumor sub-group.  

 

Figure 5 Molecular sub-groups of PB have distinct clinicopathologic features 
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a. Scatterplot of age at diagnosis for PB patients relative to tumor molecular sub-group. Bar indicates 

median age as determined using Kruskal-Wallis test.  

b. Frequency of metastatic (M+; M1, -3, -4) and non-metastatic (M0) disease determined as per the 

Chang staging system is shown relative to PB sub-groups; significance in distribution of M+ versus M0 

patients across all PB sub-groups was determined using Fisher exact test.  

c. Forest plot of Hazard ratio (HR) from univariate Cox proportional hazards regression model of 

gender (male/M vs. female/F), age, metastatic status (M+ vs M0), radiotherapy (no upfront RT vs. 

upfront RT), conventional chemotherapy only (chemo) vs. high-dose chemotherapy (HD), and extent 

of tumor removal (less than gross total resection/GTR vs GTR) on EFS (black) and OS (gray) was 

performed on data from 46 patients treated with curative intent. Whiskers denote 95% confidence 

interval.  

d. Kaplan-Meier survival analyses of event free (EFS) and overall survival (OS) for 46 patients treated 

with curative intent stratified by PB sub-groups. Plots abbreviated to maximum of 12 years from 

diagnosis. For patients with group 1-3, RB, and MYC PBs EFS were respectively, 39.5%, 100%, 

83.3%, 25.0%, and 14.3%; 5-year OS were 68.0%, 100%, 80%, 37.5%, and 28.6%.  

 

Figure 6 Schematic summary of molecular and clinical features across PB sub-groups 

 

Table 1 Summary of PB mutations identified in this study 

 

Table 2 Summary of patient features and treatment across PB sub-groups 
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Supplementary Figures and Tables, online resource 
 
Supplementary Figure 1 PBs comprise 5 molecular sub-groups 

Global methylation data generated from 72 PBs using Illumina 450K or EPIC arrays were analysed 

using NMF, HCL and K-means clustering methods to identify molecular sub-groups.  

a. Non-matrix factorization (NMF) analyses was performed on global methylation data using top 5000-

15, 000 DNA methylation probes as determined by standard deviation (SD). Highest co-phonetic score 

was determined at rank (k) = 5 with 5000 probes; corresponding NMF heat map generated with 5000 

probes is shown with PB sub-group designation. 

b. Silhouette plot of NMF analysis indicating best fit of individual PB sample within molecular sub-

group  

c. Hierarchal (HCL) and K-means cluster analyses of global methylation data using the 5000 most 

variable probes by standard deviation indicating 5 sub-groups of PBs  

 

Supplementary Figure 2 SNP array copy number analyses of PB 

Copy number calls were generated using ASCAT (Allele specific copy number analysis of tumor) on 

Illumina Omni SNP array data generated from PBs  

a. ASCAT for group 2 tumor RBTC814 showing homozygous chr 14 loss  

b. ASCAT plot for group RB tumor RBTC746 showing homozygous RB1 loss and gain of miR-17/92. 

 

Supplementary Figure 3 Schematic of hotspot mutations in Kelch domain of KBTBD4 

a. IGV screenshot of aligned reads from whole exome sequencing of RBTC786 and -793 

demonstrating in-frame insertions in KBTBD4, resulting in identical p.P311_R312 duplication 

mutation. Comparison is made to the same mutation reported by Lee JC, et al. 2019. 
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b. Mapped in-frame insertions (in yellow) in our cohort, compared to those described by Lee JC, et al. 

in three PPTID samples, which are identical to that seen in RBTC793. All mutations result in the same 

p.P311_R312 duplication mutation. 

 

Supplementary Figure 4 Impact of age, metastatic status and radiation treatment on PB survival  

Event free (EFS) and overall survival (OS) analyses were determined for 46 patients treated with 

curative intent, using the Kaplan-Meier method and log rank tests.  

a. EFS and OS of patients <3 or ≥3 years age at diagnosis. 5-yr EFS: 18.2 vs 58.2%; 5-yr OS: 24.2 vs. 

77.0% for <3 yrs vs. ≥3 yrs. 

b. EFS and OS of patients without (M0) and with metastases (M+) at diagnosis. 5-yr EFS: 29.4 vs. 

60.5%; 5-yr OS: 44.9 vs. 78.7% for M+ vs. M0. 

c. EFS and OS of patients treated with and without upfront radiation therapy. 5-yr EFS: 10.0 vs. 58.8%; 

5-yr OS: 40.0 vs. 71.0% for not radiated vs. radiated. 

 

Supplementary Figure 5 Impact of chr 16 loss on event free and overall survival of PB survival  

Event-free (EFS) and overall survival (OS) analyses were determined for 46 patients treated with 

curative intent, stratified by chr 16 loss or no chr 16 q loss in tumor specimens, using the Kaplan-Meier 

method and log rank tests. 5-yr EFS: 17.6 vs. 61.1%; 5-yr OS: 52.1 vs. 70.0% for chr 16q loss vs. no 

loss. 

 

Supplementary Table 1 Molecular analysis performed on tumors and blood samples 

 

Supplementary Table 2 Reported Ki67/MIB-1 scores and presence of hotspot KBTBD4 mutation 

among PB 
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Supplementary Table 3 Clinical characteristics and treatment details for PB patients 
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Table 1 Summary of PB mutations identified in this study 

Gene Mutation Type
Predicted deleterious

effect of mutation

Observed 
in PB 
cohort

Observations 
in COSMIC

Cancer types in COSMIC

Y1701* Nonsense Truncating 3 1 Liver

S1585* Nonsense Truncating 1 Novel

R509* Nonsense Truncating 1 3 Melanoma

Y1121* Nonsense Truncating 2 Novel

D1810fs Frameshift indel Truncating 2 Novel

S1158fs Frameshift indel Truncating 1 Novel

S1101fs Frameshift indel Truncating 1 Novel

D294fs Frameshift indel Truncating 1 Novel

F537fs Frameshift indel Truncating 1 Novel

S1618fs Frameshift indel Truncating 1 Novel

P642fs Frameshift indel Truncating 1 Novel

Y543N Missense Altered helicase domain 1 Novel

S1747L Missense Altered RNase IIIb domain 1 2 Breast

R490C Missense Helicase Domain † 1 1 Bladder

571_573delinsKFK Missense Helicase Domain - unknown 1 Novel

Q163* Nonsense Truncating 1 Novel

R252* Nonsense Truncating 1 Novel

H549fs Frameshift indel Truncating 1 Novel

P1072fs Frameshift indel Truncating 1 Novel

X1221_splice Splice site Truncating 1 Novel

P152L Missense Not in functional domain † 1 Novel

P67T Missense Not in functional domain † 1 1 Large intestine

K939N Missense Altered RNase IIIa domain 1 1 Breast

S92fs Frameshift indel Truncating 1 Novel

G509R Missense
Immediately adjacent

to DRBM1 domain
1 Novel

D248N Missense Not in functional domain † 1 Novel

I1111M Missense Unknown † 1 Novel

P905L Missense Unknown † 1 Novel

R320* Nonsense Truncating 2 21 Retinoblastoma, endometrial, breast

Q121* Nonsense Truncating 1 2 Lung, thyroid

KBTBD4 p.P311_R312dup In-frame insertion Altered Kelch binding domain 2 0 PPTID a, MB b

Abbreviations: † conflicting prediction by SIFT and Polyphen2; a reported by Lee et al.  2019, b Northcott et al . 2017
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Table 2 Summary of patient features and treatment across PB sub-groups 

n % n % n % n % n % n %

Number of patients 72 21 29 11 15 13 18 9 13 18 25 p-value

Gender 72 21 11 13 9 18 0.127

Male 36 50 10 48 4 36 7 54 2 22 13 72

Female 36 50 11 52 7 64 6 46 7 78 5 28

Age 61 21 11 11 5 13 <0.0001 *

Median (yrs) (range) 6.5 (0.5-60)

<1 3 5 0 0 0 0 0 0 0 0 3 23

1 to <3 14 23 3 14 1 9 0 0 4 80 6 46

3 to <10 20 33 14 67 1 9 2 18 1 20 2 15

10 to <18 16 26 2 10 7 64 6 55 0 0 1 8

≥18 8 13 2 10 2 18 3 27 0 0 1 8

Stage 54 21 8 8 5 12 0.028 *

M0 33 61 13 62 7 88 6 75 0 0 7 58

M+ 21 39 8 38 1 12 2 25 5 100 5 42

Surgery 47 21 7 7 4 8 0.431

GTR 17 36 5 24 3 43 4 57 1 25 4 50

<GTR 30 64 16 76 4 57 3 43 3 75 4 50

Radiotherapy 47 21 7 7 4 8 0.041 *

Yes 37 79 17 81 7 100 7 100 2 50 4 50

No 10 21 4 19 0 0 0 0 2 50 4 50

Chemo 46 21 7 6 4 8 0.749

HDC 29 63 15 71 4 57 3 50 3 75 4 50

Conventional 17 37 6 29 3 43 3 50 1 25 4 50

Status 47 21 7 7 4 8 0.019 *

Dead 18 38 9 43 0 0 1 14 2 50 6 75

Alive 29 62 12 57 7 100 6 86 2 50 2 25

Recurrence 46 21 7 7 4 7 0.003 *

Yes 21 46 12 57 0 0 1 14 2 50 6 86

No 25 54 9 43 7 100 6 86 2 50 1 14

Median follow-up 
time (yrs) (range)

4.2
(0.2-20.3)

5-yr survival (%)

EFS
(95% CI)

48.1
(32.2-62.3)

0.009 *

OS
(95% CI)

65.0
(47.8-77.7)
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Supplementary Table 1 (online resource): Samples and Analyses Performed

Germline

Targeted 
seq

WES
Targeted 
seq

746 PB PB Yes - Yes Yes -

748 PB PB Yes - Yes Yes Yes

718 PB PB Yes - Yes - -

723 PB PB Yes - Yes - -

803 PB PB Yes - Yes - -

1216 sPNET PB Yes - Yes - -

1525 PB PB Yes - Yes - -

1527 PB PB Yes - Yes - -

1543 PB PB Yes - Yes - -

1546 PB PB Yes - Yes - -

1503 PB PB Yes - Yes - -

1518 PB PB Yes - Yes - -

1520 PB PB Yes - Yes - -

1522 PB PB Yes - Yes - -

715 PB PB Yes - Yes - -

716 PB PB Yes - Yes - -

717 PB PB Yes - Yes - -

758 PB PB Yes - Yes - -

745 PB PB Yes - Yes - -

814 sPNET PB Yes - - Yes -

742 PB PB Yes - - Yes -

750 PB PB Yes - - Yes -

734 PB PB Yes - - - -

736 PB PB Yes - - - -

738 PB PB Yes - - - -

771 PB PB Yes - - - -

773 PB PB Yes - - - -

775 PB PB Yes - - - -

776 PB PB Yes - - - -

777 PB PB Yes - - - Yes

778 PB PB Yes - - - -

780 PB PB Yes - - - -

787 PB PB Yes - - - -

794 PB PB Yes - - - -

795 PB PB Yes - - - -

801 PB PB Yes - - - -

1367 PB PB Yes - - - -

Tumour
RBTC

ID
Insitutional Dx

Methylation 
based Dx

Tumor 
SNP

Nano- 
string 
miRNA



Supplementary Table 1 (online resource): Samples and Analyses Performed (continued)

Germline

Targeted 
seq

WES
Targeted 
seq

1360 sPNET PB Yes - - - -

712 sPNET PB Yes - - - -

724 PB PB Yes - - - -

767 PB PB Yes - - - -

779 PB PB Yes - - - -

781 PB PB Yes - - - -

782 PB PB Yes - - - -

785 PB PB Yes - - - -

797 PB PB Yes - - - -

877 PB PB Yes - - - Yes

881 sPNET PB Yes - - - -

1086 sPNET PB Yes - - - -

1231
Trilateral 

retinoblastoma
PB Yes - - - -

1221 PPTID PB - Yes Yes - -

799 PB PB - Yes Yes - -

784 PB PB - Yes - - Yes

788 PB PB - Yes - - -

1110 PB PB - Yes - - -

1222 PB PB - Yes Yes - -

786 PB PB - Yes - - -

793 PB PB - Yes - - -

765 PPTID PB - Yes - - -

789 PB PB - Yes - - -

792 PB PB - Yes - - -

1533 PB PB - - Yes - -

751 PB PB - - - Yes -

1781 sPNET PB - - - - Yes

757 PB PB - - - - -

761 PB PB - - - - -

763 PB PB - - - - -

764 PB PB - - - - Yes

769 PB PB - - - - -

783 PB PB - - - - -

1016 sPNET PB - - - - -

1088 PB PB - - - - -

Nano- 
string 
miRNA

RBTC
ID

Insitutional Dx
Methylation 
based Dx

Tumour
Tumor 

SNP



Sample
Institutional 
Diagnosis

Group Reported Ki67/MIB-1 (%)
Hotspot 
KBTBD4 

mutation?
RBTC716 PB 1 "Very high" n/a
RBTC717 PB 1 >20 n/a
RBTC718 PB 1 >50 n/a
RBTC745 PB 1 >75 n/a
RBTC771 PB 1 51.5 n/a
RBTC776 PB 1 >50 n/a
RBTC777 PB 1 40-60 n/a
RBTC787 PB 1 30-40 n/a
RBTC775 PB 1 40-80 n/a
RBTC773 PB 1 30-50 n/a
RBTC715 PB 2 Mixed low and high areas n/a
RBTC723 PB 2 "Very high" n/a
RBTC803 PB 2 10-15 n/a

RBTC1222 PB 2 30-40 Absent
RBTC780 PB 2 25 n/a
RBTC781 PB 2 25 n/a
RBTC782 PB 2 >40 n/a
RBTC792 PB 2 50 Absent
RBTC797 PB 2 15 n/a
RBTC742 PB 3 n/a n/a
RBTC765 PPTID 3 3 Absent
RBTC783 PB 3 40 n/a
RBTC784 PB 3 10 Absent
RBTC785 PB 3 n/a n/a
RBTC786 PB 3 10 Present
RBTC788 PB 3 25 Absent
RBTC793 PB 3 15 Present
RBTC799 PB 3 15 Absent
RBTC877 PB 3 n/a n/a

RBTC1110 PB 3 n/a Absent
RBTC1221 PPTID 3 15 Absent
RBTC1781 sPNET 3 n/a n/a
RBTC779 PB MYC 40 n/a
RBTC758 PB RB n/a n/a

Ki67/MIB-1 proliferation indices/scores were retrieved from pathology reports from original institutio
For scores given in ranges, the mean value was used for any subsequent analyses.

Supplementary Table 2 (online resource): Ki67/MIB-1 scores and presence of hotspot 
KBTBD4  mutation among PB and PPTID



Supplementary Table 3 (online resource): Details of clinical and treatment features

RBTC
ID

Histologic
diagnosis

Molecular
diagnosis

Molecular sub-
group

Primary location M stage
Age 
(yrs)

Gender
PF time 
(mths)

Relapse
Survival 

time 
(mths)

Status
Extent of 
surgery

Upfront RT Chemo
Intent to 

treat

712 PNET PB 1 Temporal 0 2.0 M 244 N 244 Alive STR CSI HD Y

716 PB PB 1 Pineal 3 6.7 F 8 N 8 Dead Biopsy CSI HD Y

717 PB PB 1 Pineal 0 3.0 M 96 N 96 Alive STR CSI HD Y

718 PB PB 1 Pineal 0 3.3 M 144 N 144 Alive STR CSI HD Y

745 PB PB 1 Pineal 0 3.3 F 59 Y 76 Dead STR CSI HD Y

751 PB PB 1 Pineal 0 11.7 F n/a N 12 Alive
Y; 

unspecified
CSI Standard Y

757 PB PB 1 Pineal 3 6.7 F 69 Y 125 Dead STR CSI HD Y

763 PB PB 1 Pineal 0 2.0 F 10 Y 16 Dead GTR No HD Y

767 PB PB 1 Pineal 0 5.2 M 101 N 101 Alive GTR CSI HD Y

771 PB PB 1 Pineal 3 4.2 F 26 Y 49 Dead STR CSI Standard Y

773 PB PB 1 Pineal 0 19.0 F 35 Y 56 Alive GTR CSI HD Y

775 PB PB 1 Pineal 3 13.3 M 61 N 61 Alive Biopsy CSI HD Y

776 PB PB 1 Pineal 0 8.7 F 3 Y 27 Dead STR No HD Y

777 PB PB 1 Pineal 3 4.8 M 58 Y 75 Dead STR Focal Standard Y

787 PB PB 1 Pineal 0 3.0 M 18 Y 33 Alive STR Focal HD Y

789 PB PB 1 Pineal 0 9.5 M 18 Y 50 Dead STR CSI Standard Y

794 PB PB 1 Pineal 3 41.5 F 24 Y 25 Dead GTR CSI Standard Y

801 PB PB 1 Pineal 3 6.8 F 73 N 73 Alive STR CSI HD Y

1088 PB PB 1 Pineal 0 3.5 M 53 N 53 Alive Biopsy CSI HD Y

1216 sPNET PB 1 Pineal 3 2.0 M 12 Y 14 Alive GTR No HD Y

1367 PB PB 1 Pineal 0 5.3 F 2 Y 61 Alive STR No Standard Y

715 PB PB 2 Pineal 0 12.5 F 77 N 77 Alive STR CSI HD Y

723 PB PB 2 Pineal 0 11.6 F 61 N 61 Alive GTR CSI HD Y

724 PB PB 2 Pineal 0 1.3 F n/a n/a n/a n/a n/a n/a n/a n/a

780 PB PB 2 Pineal 3 8.4 M 121 N 121 Alive STR CSI Standard Y

781 PB PB 2 Pineal 0 12.7 F 91 N 91 Alive STR Focal HD Y

782 PB PB 2 Pineal 0 31.0 F 79 N 79 Alive Biopsy CSI Standard Y

792 PB PB 2 Pineal n/a 31.5 M n/a n/a n/a n/a n/a n/a No n/a

797 PB PB 2 Pineal 0 13.3 M 40 N 40 Alive GTR CSI HD Y

803 PB PB 2 Pineal 0 12.3 F 23 N 23 Alive GTR CSI Standard Y

814 PNET PB 2 n/a n/a 12.0 M n/a n/a n/a Dead n/a n/a n/a N

1222 PB PB 2 Pineal n/a 13.9 F 6 Y 6 Alive GTR No No N

742 PB PB 3 Pineal n/a 11.0 M n/a n/a n/a n/a n/a n/a n/a n/a

765 PPTID PB 3 Pineal n/a n/a F n/a n/a n/a n/a n/a n/a n/a n/a

783 PB PB 3 Pineal 4 12.6 M 13 Y 14 Dead Biopsy No Standard N

784 PB PB 3 Pineal n/a 60.0 M 66 N 66 Alive STR Focal Standard Y

785 PB PB 3 Pineal 0 4.4 F 33 N 33 Alive GTR CSI HD Y

786 PB PB 3 Pineal 0 20.4 F 167 N 167 Alive GTR
Y; 

unspecified
No Y



Supplementary Table 3 (online resource): Details of clinical and treatment features (continued)

RBTC
ID

Histologic
diagnosis

Molecular
diagnosis

Molecular sub-
group

Primary location M stage
Age 
(yrs)

Gender
PF time 
(mths)

Relapse
Survival 

time 
(mths)

Status
Extent of 
surgery

Upfront RT Chemo
Intent to 

treat

788 PB PB 3 Pineal n/a 29.2 M n/a n/a n/a n/a n/a n/a No n/a

793 PB PB 3 Pineal 0 16.0 M 27 N 27 Alive GTR CSI HD Y

799 PB PB 3 Pineal 4 11.6 M 22 Y 29 Dead Biopsy CSI HD Y

877 PB PB 3 Pineal n/a n/a F n/a n/a n/a n/a n/a n/a n/a n/a

1110 PNET PB 3 Pineal 0 3.5 M 137 N 137 Alive STR CSI Standard Y

1221 PPTID PB 3 Pineal 0 15.7 F 14 N 14 Alive GTR CSI Standard Y

1781 PNET PB 3 Pineal n/a n/a F n/a n/a n/a n/a n/a n/a n/a n/a

736
PB/pineal anlage 

tumor
PB MYC Pineal 0 0.8 F 5 N 5 Dead STR No Standard N

738 PB PB MYC Pineal 0 21.0 F 47 Y n/a Dead GTR CSI HD Y

748 PB PB MYC Pineal 3 0.5 F 7 Y 10 Dead n/a No Standard n/a

750 PB PB MYC Pineal n/a 1.0 M n/a n/a n/a n/a n/a n/a n/a n/a

761 PB PB MYC Pineal 0 1.3 M 0 N 0 Dead "Radical" No No N

764 PB PB MYC Pineal 3 5.0 M 1.5 Y 204 Alive STR No Standard Y

769 PB PB MYC Pineal 3 1.0 M 33 Y 34 Dead Biopsy No HD Y

778 PB PB MYC Pineal 0 1.5 M 28 Y 42 Dead GTR Focal Standard Y

779 PB PB MYC Pineal 1 1.8 M 3 Y 4 Dead GTR No Standard Y

795
PB/pineal anlage 

tumor
PB MYC Pineal 0 1.4 M 8 Y 9 Dead STR Focal HD Y

881 PNET PB MYC Pineal 0 11.8 M 0 N 0 Dead n/a No No n/a

1016 PNET PB MYC Pineal 3 6.5 M 30 n/a 30 Dead
Y; 

unspecified
CSI Standard Y

1086 PNET PB MYC Pineal 0 0.9 M 165 N 165 Alive GTR No HD Y

1503 PB PB MYC Pineal n/a n/a F n/a n/a n/a n/a n/a n/a n/a n/a

1520 PB PB MYC Pineal n/a n/a M n/a n/a n/a n/a n/a n/a n/a n/a

1522 PB PB MYC Pineal n/a n/a M n/a n/a n/a n/a n/a n/a n/a n/a

1525 PB PB MYC Pineal n/a n/a F n/a n/a n/a n/a n/a n/a n/a n/a

1527 PB PB MYC Pineal n/a n/a M n/a n/a n/a n/a n/a n/a n/a n/a

734 PB PB RB Pineal 3 2.3 M 10 Y 34 Dead STR CSI HD Y

746 PB PB RB Pineal 3 1.1 F 10 N 10 Dead n/a No Standard n/a

758 PB PB RB Pineal 3 3.3 F n/a N 129 Alive STR CSI HD Y

1231
Trilateral 

retinoblastoma
PB RB Pineal 3 1.2 F 14 Y 14 Alive GTR No HD Y

1360 sPNET PB RB Pineal 3 1.2 M 2.4 N 2.4 Dead STR No Standard Y

1518 PB PB RB Pineal n/a n/a F n/a n/a n/a n/a n/a n/a n/a n/a

1533 PB PB RB Pineal n/a n/a F n/a n/a n/a n/a n/a n/a n/a n/a

1543 PB PB RB Pineal n/a n/a F n/a n/a n/a n/a n/a n/a n/a n/a

1546 PB PB RB Pineal n/a n/a F n/a n/a n/a n/a n/a n/a n/a n/a
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