19 research outputs found

    Falling Toward Charged Black Holes

    Get PDF
    The growth of the "size" of operators is an important diagnostic of quantum chaos. In arXiv:1802.01198 [hep-th] it was conjectured that the holographic dual of the size is proportional to the average radial component of the momentum of the particle created by the operator. Thus the growth of operators in the background of a black hole corresponds to the acceleration of the particle as it falls toward the horizon. In this note we will use the momentum-size correspondence as a tool to study scrambling in the field of a near-extremal charged black hole. The agreement with previous work provides a non-trivial test of the momentum-size relation, as well as an explanation of a paradoxical feature of scrambling previously discovered by Leichenauer [arXiv:1405.7365 [hep-th]]. Naively Leichenauer's result says that only the non-extremal entropy participates in scrambling. The same feature is also present in the SYK model. In this paper we find a quite different interpretation of Leichenauer's result which does not have to do with any decoupling of the extremal degrees of freedom. Instead it has to do with the buildup of momentum as a particle accelerates through the long throat of the Reissner-Nordstrom geometry.Comment: v4: typos correcte

    Operator growth in the SYK model

    Full text link
    We discuss the probability distribution for the "size" of a time-evolving operator in the SYK model. Scrambling is related to the fact that as time passes, the distribution shifts towards larger operators. Initially, the rate is exponential and determined by the infinite-temperature chaos exponent. We evaluate the size distribution numerically for N=30N = 30, and show how to compute it in the large-NN theory using the dressed fermion propagator. We then evaluate the distribution explicitly at leading nontrivial order in the large-qq expansion.Comment: 18 pages, 2 official figures, many unofficial figure

    Black Holes and Random Matrices

    Get PDF
    We argue that the late time behavior of horizon fluctuations in large anti-de Sitter (AdS) black holes is governed by the random matrix dynamics characteristic of quantum chaotic systems. Our main tool is the Sachdev-Ye-Kitaev (SYK) model, which we use as a simple model of a black hole. We use an analytically continued partition function ∣Z(ÎČ+it)∣2|Z(\beta +it)|^2 as well as correlation functions as diagnostics. Using numerical techniques we establish random matrix behavior at late times. We determine the early time behavior exactly in a double scaling limit, giving us a plausible estimate for the crossover time to random matrix behavior. We use these ideas to formulate a conjecture about general large AdS black holes, like those dual to 4D super-Yang-Mills theory, giving a provisional estimate of the crossover time. We make some preliminary comments about challenges to understanding the late time dynamics from a bulk point of view.Comment: 73 pages, 15 figures, minor errors correcte

    Existential witness extraction in classical realizability and via a negative translation

    Full text link
    We show how to extract existential witnesses from classical proofs using Krivine's classical realizability---where classical proofs are interpreted as lambda-terms with the call/cc control operator. We first recall the basic framework of classical realizability (in classical second-order arithmetic) and show how to extend it with primitive numerals for faster computations. Then we show how to perform witness extraction in this framework, by discussing several techniques depending on the shape of the existential formula. In particular, we show that in the Sigma01-case, Krivine's witness extraction method reduces to Friedman's through a well-suited negative translation to intuitionistic second-order arithmetic. Finally we discuss the advantages of using call/cc rather than a negative translation, especially from the point of view of an implementation.Comment: 52 pages. Accepted in Logical Methods for Computer Science (LMCS), 201

    Photography-based taxonomy is inadequate, unnecessary, and potentially harmful for biological sciences

    Get PDF
    The question whether taxonomic descriptions naming new animal species without type specimen(s) deposited in collections should be accepted for publication by scientific journals and allowed by the Code has already been discussed in Zootaxa (Dubois & NemĂ©sio 2007; Donegan 2008, 2009; NemĂ©sio 2009a–b; Dubois 2009; Gentile & Snell 2009; Minelli 2009; Cianferoni & Bartolozzi 2016; Amorim et al. 2016). This question was again raised in a letter supported by 35 signatories published in the journal Nature (Pape et al. 2016) on 15 September 2016. On 25 September 2016, the following rebuttal (strictly limited to 300 words as per the editorial rules of Nature) was submitted to Nature, which on 18 October 2016 refused to publish it. As we think this problem is a very important one for zoological taxonomy, this text is published here exactly as submitted to Nature, followed by the list of the 493 taxonomists and collection-based researchers who signed it in the short time span from 20 September to 6 October 2016
    corecore