26 research outputs found

    A method for assessing exposure of terrestrial wildlife to environmental radon ( 222 Rn) and thoron ( 220 Rn)

    Get PDF
    A method is presented to calculate radiation dose rates arising from radon, thoron and their progeny to non-human biota in the terrestrial environment. The method improves on existing methodologies for the assessment of radon to biota by using a generalised allometric approach to model respiration, calculating dose coefficients for the ICRP reference animals and plants, and extending the approach to cover thoron in addition to radon-derived isotopes. The method is applicable to a range of environmental situations involving these radionuclides in wildlife, with an envisaged application being to study the impact of human activities, which bring NORM radionuclides to the biosphere. Consequently, there is a need to determine whether there is an impact on non-human biota from exposure to anthropogenically enhanced radionuclides

    Interactive sonification exploring emergent behavior applying models for biological information and listening

    Get PDF
    Sonification is an open-ended design task to construct sound informing a listener of data. Understanding application context is critical for shaping design requirements for data translation into sound. Sonification requires methodology to maintain reproducibility when data sources exhibit non-linear properties of self-organization and emergent behavior. This research formalizes interactive sonification in an extensible model to support reproducibility when data exhibits emergent behavior. In the absence of sonification theory, extensibility demonstrates relevant methods across case studies. The interactive sonification framework foregrounds three factors: reproducible system implementation for generating sonification; interactive mechanisms enhancing a listener's multisensory observations; and reproducible data from models that characterize emergent behavior. Supramodal attention research suggests interactive exploration with auditory feedback can generate context for recognizing irregular patterns and transient dynamics. The sonification framework provides circular causality as a signal pathway for modeling a listener interacting with emergent behavior. The extensible sonification model adopts a data acquisition pathway to formalize functional symmetry across three subsystems: Experimental Data Source, Sound Generation, and Guided Exploration. To differentiate time criticality and dimensionality of emerging dynamics, are applied between subsystems to maintain scale and symmetry of concurrent processes and temporal dynamics. Tuning functions accommodate sonification design strategies that yield order parameter values to render emerging patterns discoverable as well as , to reproduce desired instances for clinical listeners. Case studies are implemented with two computational models, Chua's circuit and Swarm Chemistry social agent simulation, generating data in real-time that exhibits emergent behavior. is introduced as an informal model of a listener's clinical attention to data sonification through multisensory interaction in a context of structured inquiry. Three methods are introduced to assess the proposed sonification framework: Listening Scenario classification, data flow Attunement, and Sonification Design Patterns to classify sound control. Case study implementations are assessed against these methods comparing levels of abstraction between experimental data and sound generation. Outcomes demonstrate the framework performance as a reference model for representing experimental implementations, also for identifying common sonification structures having different experimental implementations, identifying common functions implemented in different subsystems, and comparing impact of affordances across multiple implementations of listening scenarios

    What controls gain in gain control? Mismatch negativity (MMN), priors and system biases

    Get PDF
    Repetitious patterns enable the auditory system to form prediction models specifying the most likely characteristics of subsequent sounds. Pattern deviations elicit mismatch negativity (MMN), the amplitude of which is modulated by the size of the deviation and confidence in the model. Todd et al. (2001; 2013) demonstrated that a multi-timescale sequence reveals a bias that profoundly distorts the impact of local sound statistics on the MMN amplitude. Two sounds alternate roles as repetitious “standard” and rare “deviant” rapidly (every 0.8 minutes) or slowly (every 2.4 minutes). The bias manifests as larger MMN to the sound first encountered as deviant in slow compared to fast changing sequences, but no difference for the sound first encountered as a standard. We propose that the bias is due to how Bayesian priors shape filters of sound relevance. By examining the time-course of change in MMN amplitude we show that the bias manifests immediately after roles change but rapidly disappears thereafter. The bias was reflected in the response to deviant sounds only (not in response to standards), consistent with precision estimates extracted from second order patterns modulating gain differentially for the two sounds.. Evoked responses to deviants suggest that pattern extraction and reactivation of priors can operate over tens of minutes or longer. Both MMN and deviant responses establish that: (1) priors are defined by the most proximally encountered probability distribution when one exists but; (2) when no prior exists, one is instantiated by sequence onset characteristics; and (3) priors require context interruption to be updated

    ORIGINAL PAPER Ultrasonography survey and thyroid cancer in the Fukushima

    No full text
    Abstract Thyroid cancer is one of the major health concerns after the accident in the Fukushima Dai-ichi nuclear power station (NPS). Currently, ultrasonography surveys are being performed for persons residing in the Fukushima Prefecture at the time of the accident with an age of up to 18 years. Here, the expected thyroid cancer prevalence in the Fukushima Prefecture is assessed based on an ultrasonography survey of Ukrainians, who were exposed at an age of up to 18 years to 131I released during the Chernobyl NPS accident, and on differences in equip-ment and study protocol in the two surveys. Radiation risk of thyroid cancer incidence among survivors of the atomic bombings of Hiroshima and Nagasaki and preliminary estimates of thyroid dose due to the Fukushima accident were used for the prediction of baseline and radiation-related thyroid cancer risks. We estimate a prevalence of thyroid cancer of 0.027 % (95 % CI 0.010 %; 0.050 %) for the first screening campaign in the Fukushima Prefecture. Compared with the incidence rate in Japan in 2007, the ultrasonography survey is predicted to increase baseline thyroid cancer incidence by a factor of 7.4 (95 % CI 0.95; 17.3). Under the condition of continued screening, thyroid cancer during the first fifty years after the accident is pre-dicted to be detected for about 2 % of the screened popu-lation. The prediction of radiation-related thyroid cancer in the most exposed fraction (a few ten thousand persons) of the screened population of the Fukushima Prefecture has a large uncertainty with the best estimates of the average risk of 0.1–0.3 %, depending on average dose
    corecore