111 research outputs found
Radial Moisture Profiles of Cedar Sapwood During Drying: A Proton Magnetic Resonance Study
The drying of 6 x 6 x 10 mm western red cedar (Thuja plicata Donn.) sapwood samples has been studied with proton magnetic resonance (1H-NMR) imaging. Bulk moisture content and one-dimensional radial moisture profiles have been observed as functions of time under controlled air flow rate and temperature conditions. The effects of these drying conditions on the behavior of bulk moisture content with time corresponded well to the effects observed in full-scale lumber drying, although typical observed drying rates were of the order of 100 times faster. Sub-millimeter resolution of the radial water distribution has been attained with moisture contents from the green state to as low as a few percent, and contrasting drying behavior has been observed in the carlywood and latewood regions of the growth rings
[CII] 158 micron Luminosities and Star Formation Rate in Dusty Starbursts and AGN
Results are presented for [CII] 158 micron line fluxes observed with the
Herschel PACS instrument in 112 sources with both starburst and AGN
classifications, of which 102 sources have confident detections. Results are
compared with mid-infrared spectra from the Spitzer Infrared Spectrometer and
with L(IR) from IRAS fluxes; AGN/starburst classifications are determined from
equivalent width of the 6.2 micron PAH feature. It is found that the [CII] line
flux correlates closely with the flux of the 11.3 micron PAH feature
independent of AGN/starburst classification, log [f([CII] 158 micron)/f(11.3
micron PAH)] = -0.22 +- 0.25. It is concluded that [CII] line flux measures the
photodissociation region associated with starbursts in the same fashion as the
PAH feature. A calibration of star formation rate for the starburst component
in any source having [CII] is derived comparing [CII] luminosity L([CII]) to
L(IR) with the result that log SFR = log L([CII)]) - 7.08 +- 0.3, for SFR in
solar masses per year and L([CII]) in solar luminosities. The decreasing ratio
of L([CII]) to L(IR) in more luminous sources (the "[CII] deficit") is shown to
be a consequence of the dominant contribution to L(IR) arising from a luminous
AGN component because the sources with largest L(IR) and smallest
L([CII])/L(IR) are AGN.Comment: Accepted for publication in The Astrophysical Journa
Evidence of strong quasar feedback in the early Universe
Most theoretical models invoke quasar driven outflows to quench star
formation in massive galaxies, this feedback mechanism is required to account
for the population of old and passive galaxies observed in the local universe.
The discovery of massive, old and passive galaxies at z=2, implies that such
quasar feedback onto the host galaxy must have been at work very early on,
close to the reionization epoch. We have observed the [CII]158um transition in
SDSSJ114816.64+525150.3 that, at z=6.4189, is one of the most distant quasars
known. We detect broad wings of the line tracing a quasar-driven massive
outflow. This is the most distant massive outflow ever detected and is likely
tracing the long sought quasar feedback, already at work in the early Universe.
The outflow is marginally resolved on scales of about 16 kpc, implying that the
outflow can really affect the whole galaxy, as required by quasar feedback
models. The inferred outflow rate, dM/dt > 3500 Msun/yr, is the highest ever
found. At this rate the outflow can clean the gas in the host galaxy, and
therefore quench star formation, in a few million years.Comment: 5 pages, 3 figures, accepted for publication in MNRAS Letter
Parabacteroides distasonis:intriguing aerotolerant gut anaerobe with emerging antimicrobial resistance and pathogenic and probiotic roles in human health
Parabacteroides distasonis is the type strain for the genus Parabacteroides, a group of gram-negative anaerobic bacteria that commonly colonize the gastrointestinal tract of numerous species. First isolated in the 1930s from a clinical specimen as Bacteroides distasonis, the strain was re-classified to form the new genus Parabacteroides in 2006. Currently, the genus consists of 15 species, 10 of which are listed as 'validly named' (P. acidifaciens, P. chartae, P. chinchillae, P. chongii, P. distasonis, P. faecis, P. goldsteinii, P. gordonii, P. johnsonii, and P. merdae) and 5 'not validly named' (P. bouchesdurhonensis, P. massiliensis, P. pacaensis, P. provencensis, and P. timonensis) by the List of Prokaryotic names with Standing in Nomenclature. The Parabacteroides genus has been associated with reports of both beneficial and pathogenic effects in human health. Herein, we review the literature on the history, ecology, diseases, antimicrobial resistance, and genetics of this bacterium, illustrating the effects of P. distasonis on human and animal health
Transformation between spin-Peierls and incommensurate fluctuating phases of Sc-doped TiOCl
Single crystals of ScxTi1âxOCl(x=0.005) have been grown by the vapor phase transport technique. Specific heat measurements prove the absence of phase transitions for 4â200 K. Instead, an excess entropy is observed over a range of temperatures that encompasses the incommensurate phase transition at 90 K and the spin-Peierls transition at 67 K of pure TiOCl. Temperature-dependent x-ray diffraction on ScxTi1âxOCl gives broadened diffraction maxima at incommensurate positions between Tc1=61.5(3) and âŒ90 K, and at commensurate positions below 61.5 K. These results are interpreted as due to the presence of an incommensurate phase without long-range order at intermediate temperatures, and of a highly disturbed commensurate phase without long-range order at low temperatures. The commensurate phase is attributed to a fluctuating spin-Peierls state on an orthorhombic lattice. The monoclinic symmetry and local structure of the fluctuations are equal to the symmetry and structure of the ordered spin-Peierls state of TiOCl. A novel feature of ScxTi1âxOCl(x=0.005) is a transformation from one fluctuating phase (the incommensurate phase at intermediate temperatures) to another fluctuating phase (the spin-Peierls-like phase). This transformation is not a phase transition occurring at a critical temperature, but it proceeds gradually over a temperature range of âŒ10 K wide. The destruction of long-range order requires much lower levels of doping in TiOCl than in other low-dimensional electronic crystals, like the canonical spin-Peierls compound CuGeO3. An explanation for the higher sensitivity to doping has not been found, but it is noticed that it may be the result of an increased two-dimensional character of the doped magnetic system. The observed fluctuating states with long correlation lengths are reminiscent of KosterlitzâThouless-type phases in two-dimensional systems
On the co-evolution of supermassive black holes and their host galaxies since z = 3
[Abridged] To investigate the evolution in the relation between galaxy
stellar and central black hole mass we construct a volume limited complete
sample of 85 AGN with host galaxy stellar masses M_{*} > 10^{10.5} M_{sol}, and
specific X-ray luminosities L_{X} > 2.35 x 10^{43} erg s^{-1} at 0.4 < z < 3.
We calculate the Eddington limiting masses of the supermassive black holes
residing at the centre of these galaxies, and observe an increase in the
average Eddington limiting black hole mass with redshift. By assuming that
there is no evolution in the Eddington ratio (\mu) and then that there is
maximum possible evolution to the Eddington limit, we quantify the maximum
possible evolution in the M_{*} / M_{BH} ratio as lying in the range 700 <
M_{*}/M_{BH} < 10000, compared with the local value of M_{*}/M_{BH} ~ 1000. We
furthermore find that the fraction of galaxies which are AGN (with L_{X} > 2.35
x 10^{43} erg s^{-1}) rises with redshift from 1.2 +/- 0.2 % at z = 0.7 to 7.4
+/- 2.0 % at z = 2.5. We use our results to calculate the maximum timescales
for which our sample of AGN can continue to accrete at their observed rates
before surpassing the local galaxy-black hole mass relation. We use these
timescales to calculate the total fraction of massive galaxies which will be
active (with L_{X} > 2.35 x 10^{43} erg s^{-1}) since z = 3, finding that at
least ~ 40% of all massive galaxies will be Seyfert luminosity AGN or brighter
during this epoch. Further, we calculate the energy density due to AGN activity
in the Universe as 1.0 (+/- 0.3) x 10^{57} erg Mpc^{-3} Gyr^{-1}, potentially
providing a significant source of energy for AGN feedback on star formation. We
also use this method to compute the evolution in the X-ray luminosity density
of AGN with redshift, finding that massive galaxy Seyfert luminosity AGN are
the dominant source of X-ray emission in the Universe at z < 3.Comment: 25 pages, 10 figures, accepted for publication in MNRA
NuStar observations of WISE J1036+0449, a galaxy at z ⌠1 obscured by hot dust
Hot dust-obscured galaxies (hot DOGs), selected from Wide-Field Infrared Survey Explorerâs all-sky infrared survey, host some of the most powerful active galactic nuclei known and may represent an important stage in the evolution of galaxies. Most known hot DOGs are located at z> 1.5, due in part to a strong bias against identifying them at lower redshift related to the selection criteria. We present a new selection method that identifies 153 hot DOG candidates at zË 1, where they are significantly brighter and easier to study. We validate this approach by measuring a redshift z = 1.009 and finding a spectral energy distribution similar to that of higher-redshift hot DOGs for one of these objects, WISE J1036+0449 ({L}{Bol}â 8Ă {10}46 {erg} {{{s}}}-1). We find evidence of a broadened component in Mg II, which would imply a black hole mass of {M}{BH}â 2Ă {10}8 {M}â and an Eddington ratio of {λ }{Edd}â 2.7. WISE J1036+0449 is the first hot DOG detected by the Nuclear Spectroscopic Telescope Array, and observations show that the source is heavily obscured, with a column density of {N}{{H}}â (2{--}15)Ă {10}23 {{cm}}-2. The source has an intrinsic 2-10 keV luminosity of Ë 6Ă {10}44 {erg} {{{s}}}-1, a value significantly lower than that expected from the mid-infrared/X-ray correlation. We also find that other hot DOGs observed by X-ray facilities show a similar deficiency of X-ray flux. We discuss the origin of the X-ray weakness and the absorption properties of hot DOGs. Hot DOGs at zâČ 1 could be excellent laboratories to probe the characteristics of the accretion flow and of the X-ray emitting plasma at extreme values of the Eddington ratio
The distribution of radioactive 44Ti in Cassiopeia A
The distribution of elements produced in the innermost layers of a supernova explosion is a key diagnostic for studying the collapse of massive stars. Here we present the results of a 2.4 Ms NuSTAR observing campaign aimed at studying the supernova remnant Cassiopeia A (Cas A). We perform spatially resolved spectroscopic analyses of the 44Ti ejecta, which we use to determine the Doppler shift and thus the three-dimensional (3D) velocities of the 44Ti ejecta. We find an initial 44Ti mass of (1.54 ± 0.21) Ă 10â4 Mâ, which has a present-day average momentum direction of 340° ± 15° projected onto the plane of the sky (measured clockwise from celestial north) and is tilted by 58° ± 20° into the plane of the sky away from the observer, roughly opposite to the inferred direction of motion of the central compact object. We find some 44Ti ejecta that are clearly interior to the reverse shock and some that are clearly exterior to it. Where we observe 44Ti ejecta exterior to the reverse shock we also see shock-heated iron; however, there are regions where we see iron but do not observe 44Ti. This suggests that the local conditions of the supernova shock during explosive nucleosynthesis varied enough to suppress the production of 44Ti by at least a factor of two in some regions, even in regions that are assumed to be the result of processes like α-rich freezeout that should produce both iron and titanium
Expanding the Reach of an Evidence-Based, System-Level, Racial Equity Intervention: Translating ACCURE to the Maternal Healthcare and Education Systems
The abundance of literature documenting the impact of racism on health disparities requires additional theoretical, statistical, and conceptual contributions to illustrate how anti-racist interventions can be an important strategy to reduce racial inequities and improve population health. Accountability for Cancer Care through Undoing Racism and Equity (ACCURE) was an NIH-funded intervention that utilized an antiracism lens and community-based participatory research (CBPR) approaches to address Black-White disparities in cancer treatment completion. ACCURE emphasized change at the institutional level of healthcare systems through two primary principles of antiracism organizing: transparency and accountability. ACCURE was successful in eliminating the treatment completion disparity and improved completion rates for breast and lung cancer for all participants in the study. The structural nature of the ACCURE intervention creates an opportunity for applications in other health outcomes, as well as within educational institutions that represent social determinants of health. We are focusing on the maternal healthcare and K-12 education systems in particular because of the dire racial inequities faced by pregnant people and school-aged children. In this article, we hypothesize cross-systems translation of a system-level intervention exploring how key characteristics of ACCURE can be implemented in different institutions. Using core elements of ACCURE (i.e., community partners, milestone tracker, navigator, champion, and racial equity training), we present a framework that extends ACCURE's approach to the maternal healthcare and K-12 school systems. This framework provides practical, evidence-based antiracism strategies that can be applied and evaluated in other systems to address widespread structural inequities
- âŠ