175 research outputs found

    Role of lactobacilli and lactoferrin in the mucosal cervicovaginal defense

    Get PDF
    Human lactoferrin is an iron-binding glycoprotein present at high concentrations in breast milk and colostrum. It is produced by many exocrine glands and widely distributed in a variety of body fluids. This protein has antimicrobial, immunomodulatory, antioxidant, and anticancer properties. Two important hLf receptors have been identified: LDL receptor related protein (LRP1), a low specificity receptor, and intelectin-1 (ITLN1), a high specificity receptor. No data are present on the role of hLf on the biliary epithelium. Our aims have been to evaluate the expression of Lf and its receptors in human and murine cholangiocytes and its effect on proliferation. Immunohistochemistry and immunofluorescence (IF) were conducted on human healthy and primary biliary cholangitis (PBC) liver samples as well as on liver samples obtained from normal and bile duct ligated (BDL) mice to evaluate the expression of Lf, LRP1 and ITLN1. Cell proliferation in vitro studies were performed on human cholangiocyte cell lines via 3-(4,5-dimetiltiazol-2-il)-2,5-diphenyltetrazolium assay as well as IF to evaluate proliferating cell nuclear antigen (PCNA) expression. Our results show that mouse and human cholangiocytes express Lf, LRP1 and ITLN1, at higher extent in cholangiocytes from BDL and PBC samples. Furthermore, the in vitro addition of bovine Lf (bLf) has a proliferative effect on human cholangiocyte cell line. The results support a proliferative role of hLf on the biliary epithelium; this pro-proliferative effect of hLf and bLf on cholangiocytes could be particularly relevant in human cholangiopathies such as PBC, characterized by cholangiocyte death and ductopenia

    Thermal Properties of Graphene, Carbon Nanotubes and Nanostructured Carbon Materials

    Full text link
    Recent years witnessed a rapid growth of interest of scientific and engineering communities to thermal properties of materials. Carbon allotropes and derivatives occupy a unique place in terms of their ability to conduct heat. The room-temperature thermal conductivity of carbon materials span an extraordinary large range - of over five orders of magnitude - from the lowest in amorphous carbons to the highest in graphene and carbon nanotubes. I review thermal and thermoelectric properties of carbon materials focusing on recent results for graphene, carbon nanotubes and nanostructured carbon materials with different degrees of disorder. A special attention is given to the unusual size dependence of heat conduction in two-dimensional crystals and, specifically, in graphene. I also describe prospects of applications of graphene and carbon materials for thermal management of electronics.Comment: Review Paper; 37 manuscript pages; 4 figures and 2 boxe

    Simple and efficient expression of Agaricus meleagris pyranose dehydrogenase in Pichia pastoris

    Get PDF
    Pyranose dehydrogenase (PDH) is a fungal flavin-dependent sugar oxidoreductase that is highly interesting for applications in organic synthesis or electrochemistry. The low expression levels of the filamentous fungus Agaricus meleagris as well as the demand for engineered PDH make heterologous expression necessary. Recently, Aspergillus species were described to efficiently secrete recombinant PDH. Here, we evaluate recombinant protein production with expression hosts more suitable for genetic engineering. Expression in Escherichia coli resulted in no soluble or active PDH. Heterologous expression in the methylotrophic yeast Pichia pastoris was investigated using two different signal sequences as well as a codon-optimized sequence. A 96-well plate activity screening for transformants of all constructs was established and the best expressing clone was used for large-scale production in 50-L scale, which gave a volumetric yield of 223 mg L−1 PDH or 1,330 U L−1 d−1 in space–time yield. Purification yielded 13.4 g of pure enzyme representing 95.8% of the initial activity. The hyperglycosylated recombinant enzyme had a 20% lower specific activity than the native enzyme; however, the kinetic properties were essentially identical. This study demonstrates the successful expression of PDH in the eukaryotic host organism P. pastoris paving the way for protein engineering. Additionally, the feasibility of large-scale production of the enzyme with this expression system together with a simplified purification scheme for easy high-yield purification is shown

    Reduced synthesis of the Ybt siderophore or production of aberrant Ybt-like molecules activates transcription of yersiniabactin genes in Yersinia pestis

    Get PDF
    Synthesis of the siderophore yersiniabactin (Ybt) proceeds by a mixed nonribosomal peptide synthetase/polyketide synthase mechanism. Transcription of ybt genes encoding biosynthetic and transport functions is repressed under excess iron conditions by Fur, but is also activated by Ybt via the transcriptional regulator YbtA. While mutations in most biosynthetic genes and ybtA negate transcription activation from the regulated promoters, three biosynthetic mutations do not reduce this transcriptional activation. Here we show that two of these mutants, one lacking the putative type II thioesterase (TE) YbtT and the other with a mutation in the TE domain of HMWP1, produce reduced levels of authentic Ybt that are capable of signalling activity. Alanine substitutions in two residues of YbtT that are essential for catalytic activity in other type II TEs reduced the ability of Yersinia pestis to grow under iron-chelated conditions. The third mutant, which lacks the salicylate synthase YbtS, did not make authentic Ybt but did produce a signalling molecule. Finally, a Δpgm strain of Y. pestis, which lacks essential Ybt biosynthetic genes, also produced a signalling molecule that can activate transcription of ybt genes. The non-Ybt signal molecules from these two mutants are likely separate compounds. While these compounds are not biologically relevant to normal Ybt regulation, a comparison of the structures of Ybt and other signalling molecules will help in determining the chemical structures recognized as a Ybt signal

    Epidermal growth factor suppresses intestinal epithelial cell shedding both in vitro and in vivo via a MAPK dependent pathway

    Get PDF
    Cell shedding from the intestinal villus is a key element of tissue turnover, essential to maintain health and homeostasis. However, the signals regulating this process are not well understood. We asked whether shedding is controlled by epidermal growth factor receptor (EGFR), an important driver of intestinal growth and differentiation. In 3D ileal enteroid culture and cell culture models (MDCK, IEC-6, IPEC-J2 cells), extrusion events were suppressed by EGF, as determined by direct counting of released cells or rhodamine-phalloidin labeling of condensed actin rings. Blockade of MEK/ERK, but not other downstream pathways such as PI3K or PKC, reversed EGF inhibition of shedding. These effects were not due to a change in cell viability. Furthermore, EGF-driven MAPK signaling inhibited both caspase-independent and -dependent shedding pathways. Similar results were found in vivo, in a novel zebrafish model for intestinal epithelial shedding. Together, the data show that EGF suppresses cell shedding in the intestinal epithelium through a selective, MAPK dependent pathway affecting multiple extrusion mechanisms. EGFR signaling may be a therapeutic target for disorders featuring excessive cell turnover, such as inflammatory bowel diseases

    Nitroxyl (HNO) Stimulates Soluble Guanylyl Cyclase to Suppress Cardiomyocyte Hypertrophy and Superoxide Generation

    Get PDF
    Background: New therapeutic targets for cardiac hypertrophy, an independent risk factor for heart failure and death, are essential. HNO is a novel redox sibling of NON attracting considerable attention for the treatment of cardiovascular disorders, eliciting cGMP-dependent vasodilatation yet cGMP-independent positive inotropy. The impact of HNO on cardiac hypertrophy (which is negatively regulated by cGMP) however has not been investigated. Methods: Neonatal rat cardiomyocytes were incubated with angiotensin II (Ang II) in the presence and absence of the HNO donor Angeli’s salt (sodium trioxodinitrate) or B-type natriuretic peptide, BNP (all 1 mmol/L). Hypertrophic responses and its triggers, as well as cGMP signaling, were determined. Results: We now demonstrate that Angeli’s salt inhibits Ang II-induced hypertrophic responses in cardiomyocytes, including increases in cardiomyocyte size, de novo protein synthesis and b-myosin heavy chain expression. Angeli’s salt also suppresses Ang II induction of key triggers of the cardiomyocyte hypertrophic response, including NADPH oxidase (on both Nox2 expression and superoxide generation), as well as p38 mitogen-activated protein kinase (p38MAPK). The antihypertrophic, superoxide-suppressing and cGMP-elevating effects of Angeli’s salt were mimicked by BNP. We also demonstrate that the effects of Angeli’s salt are specifically mediated by HNO (with no role for NON or nitrite), with subsequent activation of cardiomyocyte soluble guanylyl cyclase (sGC) and cGMP signaling (on both cGMP-dependen

    The role of gasotransmitters NO, H S, CO in myocardial ischemia/reperfusion injury and cardioprotection by preconditioning, postconditioning, and remote conditioning

    Get PDF
    Ischemic heart disease is one of the leading causes of morbidity and mortality worldwide. The development of cardioprotective therapeutic agents remains a partially unmet need and a challenge for both medicine and industry, with significant financial and social implications. Protection of the myocardium can be achieved by mechanical vascular occlusions such as preconditioning (PC) when brief episodes of ischemia/reperfusion are subjected prior to ischemia; postconditioning (PostC) when the brief episodes are subjected at the immediate onset of reperfusion, as well as remote conditioning (RC) when the brief episodes are subjected in another vascular territory. The elucidation of the signaling pathways which underlie the protective effects of PC, PostC and RC would be expected to reveal novel molecular targets for cardioprotection that could be manipulated by pharmacological agents to prevent reperfusion injury. Gasotransmitters including nitric oxide (NO), hydrogen sulphide (H2 S) and carbon monoxide (CO) are a growing family of regulatory molecules which impact on physiological and pathological functions. NO, H2 S and CO share several common properties; they are beneficial at low concentrations but hazardous in higher amounts, they relax smooth muscle cells, inhibit apoptosis, and exert anti-inflammatory effects. In the cardiovascular system, both NO, H2 S and CO induce vasorelaxation, and promote cardioprotection. In this review article, we summarize current knowledge on the role of the gasotransmitters NO, H2 S, and CO in myocardial ischemia/reperfusion injury and cardioprotection provided by conditioning strategies and highlight future perspectives in cardioprotection by NO, H2 S, CO, as well as their donor molecules
    • …
    corecore