84 research outputs found

    Experimental characterisation of swirl stabilized annular stratified flames

    Get PDF
    A burner for investigating lean stratified premixed flames propagating in intense isotropic turbulence has been developed. Lean pre-mixtures of methane at different equivalence ratios are divided between two concentric co-flows to obtain annular stratification. Turbulence generators are used to control the level of turbulence intensity in the oncoming flow. A third annular weakly swirling air flow provides the flame stabilization mechanism. A fundamental characteristic is that flame stabilization does not rely on flow recirculation. The flames are maintained at a position where the local mass flux balances the burning rate, the result is a freely propagating turbulent flame front. The absence of physical surfaces in the vicinity of the flame provides free access for laser diagnostics. Stereoscopic Planar Image Velocimetry (SPIV) has been applied to obtain the three components of the instantaneous velocity vectors on a vertical plane above the burner outlet where the flames propagate. The instantaneous temperature fields have been determined through Laser Induced Rayleigh (LIRay) scattering. Planar Laser Induced Fluorescence (PLIF) on acetone has been used to calculate the average equivalence ratio distributions. Instantaneous turbulent burning velocities have been extracted from SPIV results, while flame curvature and flame thermal thickness values have been calculated using the instantaneous temperature fields. The probability distributions of these quantities have been compared considering the separate influence of equivalence ratio stratification and turbulence. It has been observed that increased levels of turbulence determine higher turbulent burning velocities and flame front wrinkling. Flames characterized by stronger fuel stratification showed higher values in turbulent burning velocities. From the curvature analysis emerged that increased fuel concentration gradients favour flame wrinkling, especially when associated with positive small radius of curvature. This determines an increased surface area available for reaction that promotes a faster propagation of the flame front in the oncoming combustible mixtures.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Exploring the larval transcriptome of the common sole (Solea solea L.)

    Get PDF
    open7noBackground The common sole (Solea solea) is a promising candidate for European aquaculture; however, the limited knowledge of the physiological mechanisms underlying larval development in this species has hampered the establishment of successful flatfish aquaculture. Although the fact that genomic tools and resources are available for some flatfish species, common sole genomics remains a mostly unexplored field. Here, we report, for the first time, the sequencing and characterisation of the transcriptome of S. solea and its application for the study of molecular mechanisms underlying physiological and morphological changes during larval-to-juvenile transition. Results The S. solea transcriptome was generated from whole larvae and adult tissues using the Roche 454 platform. The assembly process produced a set of 22,223 Isotigs with an average size of 726 nt, 29 contigs and a total of 203,692 singletons. Of the assembled sequences, 75.2% were annotated with at least one known transcript/protein; these transcripts were then used to develop a custom oligo-DNA microarray. A total of 14,674 oligonucleotide probes (60 nt), representing 12,836 transcripts, were in situ synthesised onto the array using Agilent non-contact ink-jet technology. The microarray platform was used to investigate the gene expression profiles of sole larvae from hatching to the juvenile form. Genes involved in the ontogenesis of the visual system are up-regulated during the early stages of larval development, while muscle development and anaerobic energy pathways increase in expression over time. The gene expression profiles of key transcripts of the thyroid hormones (TH) cascade and the temporal regulation of the GH/IGF1 (growth hormone/insulin-like growth factor I) system suggest a pivotal role of these pathways in fish growth and initiation of metamorphosis. Pre-metamorphic larvae display a distinctive transcriptomic landscape compared to previous and later stages. Our findings highlighted the up-regulation of gene pathways involved in the development of the gastrointestinal system as well as biological processes related to folic acid and retinol metabolism. Additional evidence led to the formation of the hypothesis that molecular mechanisms of cell motility and ECM adhesion may play a role in tissue rearrangement during common sole metamorphosis. Conclusions Next-generation sequencing provided a good representation of the sole transcriptome, and the combination of different approaches led to the annotation of a high number of transcripts. The construction of a microarray platform for the characterisation of the larval sole transcriptome permitted the definition of the main processes involved in organogenesis and larval growth. Keywords: Solea solea; Flatfish; Larval development; Metamorphosis; Transcriptome; Gene expressionopenSerena Ferraresso; Alessio Bonaldo; Luca Parma; Stefano Cinotti; Paola Massi; Luca Bargelloni; Pier Paolo GattaSerena Ferraresso; Alessio Bonaldo; Luca Parma; Stefano Cinotti; Paola Massi; Luca Bargelloni; Pier Paolo Gatt

    Integrated study on production performance and quality traits of European sea bass ( Dicentrarchus labrax ) fed high plant protein diets

    Get PDF
    In the issue of fishmeal replacement, besides maintaining optimal growth, a key area of investigation for continuing to improve modern aquafeeds includes the evaluation of the effects of plant ingredients on fish quality. It is generally accepted that farmed fish quality can be influenced by the formulation of composition of their feed. Hence, the aim of the present research was to evaluate plant protein inclusion up to 84% of the overall protein content in an integrated study on growth and quality traits of European sea bass. Three diets were formulated to contain increasing plant protein levels (50, 67 and 84%; 50PP, 67PP and 84PP, respectively), with fishmeal dietary levels at 30, 20 and 10%, respectively. No significant differences due to reducing fishmeal content were observed after 118 days in terms of growth (final body weight and specific growth rate) and feed intake, even though a trend towards lower growth performance at higher fishmeal replacement levels was observed. Fish fed diet 50PP showed lower feed conversion rate in comparison to those fed diet 84PP, while no differences were recorded between diet 50PP and 67PP. No significant differences among treatments were found in protein efficiency rate. On the contrary, fish fed diet 84PP showed lower gross protein efficiency in comparison to those fed diet 50PP and 67PP. No significant differences in biometric indices and fillet composition were observed. No significant differences were found in pH, liquid holding capacity and skin colour measurements between treatments, while regarding fillet colour, significant differences were found only for H\ub0ab. In conclusion, our findings demonstrated that dietary plant proteins up to 84% of the overall protein content had no effects on quality traits of European sea bass in comparison with 50% and 67%. All experimental groups showed similar growth even though 84% plant protein inclusion negatively influenced feed and protein utilisation

    Feeding common sole (Solea solea) juveniles with increasing dietary lipid levels affects growth, feed utilization and gut health

    Get PDF
    Knowledge about the nutritional requirements of common sole (Solea solea) is limited and no information regarding the optimal dietary lipid level is available yet. Thus, this study was undertaken to assess the growth response and feed utilization of common sole juveniles fed diets with increasing lipid levels. Four isonitrogenous (59% protein) pelletized diets with different dietary lipid levels (8%, 12%, 16% and 20%; L8, L12, L16 and L20, respectively) were fed to triplicate fish groups of 80 individuals to apparent satiation over 150 days. A one-way ANOVA, Tukey's post hoc test and linear regression were used to analyse the data (P 64 0.05). At the end of the trial, final body weight was significantly higher in fish fed L8 (40.7 \ub1 1.7 g), followed by those fed L12 (35.1 \ub1 1.2 g), L16 (27.9 \ub1 2.5 g) and L20 (22.1 \ub1 0.3 g). The specific growth rate was higher in fish fed L8 and L12, compared to the other treatments, and it was lowest in L20. Voluntary feed intake decreased with an increase in the dietary lipid level. The feed conversion rate, the protein efficiency ratio and the gross protein efficiency were lower in fish fed L20, while no significant differences were observed among L8, L12 and L16. Gross lipid efficiency was significantly higher in fish fed low lipid diets. Histological observations showed that 19 of 36 observed subjects had lipid droplets in the cytoplasm of enterocytes at the apex of the mucosal folds and, in some cases, also along the entire fold (intestinal steatosis). The number of fish with intestinal steatosis in groups L20 and L16 was significantly higher than the number in group L8. Ultrastructure showed large electrondense lipid droplets within the cytoplasm of enterocytes and warping of the cytoplasmic membrane (steatosis); in some cases, lipid droplets were also present within the Golgi apparatus. In conclusion, the results of this trial suggest that the diet for S. solea juveniles should include no more than 12% lipids. Higher lipid inclusions not only led to a substantial decline in performance but also affected gut health. This should be taken into consideration in formulating specific practical diets for common sole

    The incidence of different pellet size on growth, gut evacuation, feed digestibility and feed waste in gilthead sea bream (Sparus aurata)

    Get PDF
    The feeding behaviour of gilthead sea bream (Sparus aurata) consists in cracking and chewing feed. In farming condition, this results in crushing feed pellets with an occasional loss of some fragments which can vary in response to pellet dimension, thus affecting feed waste at the on-growing stage. However, few studies have addressed this issue and even less information on the further effect of different pellet size on growth, gut evacuation and feed efficiency are available on this species. Thus, a 122-day study was undertaken to assess the effects of three pellet size (2 mm, S; 4 mm, M and 6 mm, L) on growth, gut evacuation, feed waste and feed digestibility during the on-growing of gilthead sea bream (initial weight: 215.9 +/- 1.8 g). No significant effects of pellet size on growth (final body weight and SGR) were observed. Pellets diameters had no effects on feed digestibility (protein and dry matter) and feed efficiency parameters (FCR, PER, GPE, GLE) even if differences in the gastric evacuation rate were detected at different pellet size. At this regard, the shape-rate model developed to estimate the gastrointestinal evacuation pattern, evidenced a slower gastric evacuation rate in the 6 mm diet, while no differences in foregut evacuation rate were observed. Data on feed waste, highlighted how feed losses by chewing was practically absent in the S (2 mm) diet while in the M (4 mm) and L (6 mm) diets 24.3 and 17.3% of the entire meal was losses by chewing activity, respectively. The study reinforces previous observation that feeding pellets size of 4 and 6 mm in gilthead sea bream within 200-450 g could induced an excess of feed waste by chewing activity with economic and environmental implication. Despite the reduced feed intake observed, pellets size of 2 mm did not lead to any feed losses by chewing and was able to guarantee similar growth compared to the other diets. Further studies considering intermediate pellets size (3 mm) may be useful in order to further optimize the pellet size choice during the on-growing phase of this species

    Effects of Bioactive Peptides from Atlantic Salmon Processing By-Products on Oxyntopeptic and Enteroendocrine Cells of the Gastric Mucosa of European Seabass and Gilthead Seabream

    Get PDF
    The present study was designed to evaluate the effects of dietary levels of bioactive peptides (BPs) derived from salmon processing by-products on the presence and distribution of peptic cells (oxyntopeptic cells, OPs) and enteric endocrine cells (EECs) that contain GHR, NPY and SOM in the gastric mucosa of European seabass and gilthead seabream. In this study, 27 seabass and 27 seabreams were divided into three experimental groups: a control group (CTR) fed a control diet and two groups fed different levels of BP to replace fishmeal: 5% BP (BP5%) and 10% BP (BP10%). The stomach of each fish was sampled and processed for immunohistochemistry. Some SOM, NPY and GHR-IR cells exhibited alternating “open type” and “closed type” EECs morphologies. The BP10% group (16.8 ± 7.5) showed an increase in the number of NPY-IR cells compared to CTR (CTR 8.5 ± 4.8) and BP5% (BP10% vs. CTR p ≤ 0.01; BP10% vs. BP5% p ≤ 0.05) in the seabream gastric mucosa. In addition, in seabream gastric tissue, SOM-IR cells in the BP 10% diet (16.8 ± 3.5) were different from those in CTR (12.5 ± 5) (CTR vs. BP 10% p ≤ 0.05) and BP 5% (12.9 ± 2.5) (BP 5% vs. BP 10% p ≤ 0.01). EEC SOM-IR cells increased at 10% BP (5.3 ± 0.7) compared to 5% BP (4.4 ± 0.8) (5% BP vs. 10% BP p ≤ 0.05) in seabass. The results obtained may provide a good basis for a better understanding of the potential of salmon BPs as feed ingredients for seabass and seabream.publishedVersio

    Evaluating genetic traceability methods for captive bred marine fish and their applications in fisheries management and wildlife forensics

    Get PDF
    Growing demands for marine fish products is leading to increased pressure on already depleted wild populations and a rise in the aquaculture production. Consequently, more captive bred fish are released into the wild through accidental escape or deliberate restocking, stock enhancement and sea ranching programs. The increased mixing of captive bred fish with wild conspecifics may affect the ecological and/or genetic integrity of wild fish populations. From a fisheries management perspective unambiguous identification tools for captive bred fish will be highly valuable to manage risks. Additionally there is great potential to use these tools in wildlife forensics (i.e. tracing back escapees to their origin and determining mislabelling of seafood products). Using SNP data from captive bred and wild populations of Atlantic cod (Gadus morhua L.) and sole (Solea solea L.), we explored the efficiency of population and parentage assignment techniques for the identification and tracing of captive bred fish. Simulated and empirical data were used to correct for stochastic genetic effects. Overall, parentage assignment performed well when a large effective population size characterizes the broodstock and escapees originate from early generations of captive breeding. Consequently, parentage assignments are particularly useful from a fisheries management perspective to monitor the effects of deliberate releases of captive bred fish on wild populations. Population assignment proved to be more efficient after several generations of captive breeding, which makes it a useful method in forensic applications for well-established aquaculture species. We suggest the implementation of a case by case strategy when choosing the best method

    Effects of rearing density on growth, digestive conditions, welfare indicators and gut bacterial community of gilthead sea bream (Sparus aurata, L. 1758) fed different fishmeal and fish oil dietary levels

    Get PDF
    In Mediterranean aquaculture, significant advances have been made towards a reduction of marine-derived ingredients in aquafeed formulation, as well as in defining the effect on how environmental factors such as rearing density interact with fish health. Little research, however, has examined the interaction between rearing density and dietary composition on main key performance indicators, physiological processes and gut bacterial community. A study was undertaken, therefore to assess growth response, digestive enzyme activity, humoral immunity on skin mucus, plasma biochemistry and gut microbiota of gilthead sea bream (Sparus aurata, L. 1758) reared at high (HD, 36–44 kg m−3) and low (LD, 12–15 kg m−3) final stocking densities and fed high (FM30/FO15, 30% fishmeal FM, 15% fish oil, FO) and low (FM10/FO3; 10% FM and 3% FO) FM and FO levels. Isonitrogenous and isolipidic extruded diets were fed to triplicate fish groups (initial weight: 96.2 g) to overfeeding over 98 days. The densities tested had no major effects on overall growth and feed efficiency of sea bream reared at high or low FM and FO dietary level. However, HD seems to reduce feed intake compared to LD mainly in fish fed FM30/FO15. Results of digestive enzyme activity indicated a comparable digestive efficiency among rearing densities and within each dietary treatment even if intestinal brush border enzymes appeared to be more influenced by stocking density compared to gastric and pancreatic enzymes. Plasma parameters related to nutritional and physiological conditions were not affected by rearing densities under both nutritional conditions a similar observation was also achieved through the study of lysozyme, protease, antiprotease and total protein determination in skin mucus, however; in this case lysozyme was slightly reduced at HD. For the first time on this species, the effect of rearing density on gut bacterial community was studied. Different response in relation to dietary treatment under HD and LD were detected. Low FM-FO diet maintained steady the biodiversity of the gut bacterial community between LD and HD conditions while fish fed high FM-FO level showed a reduced biodiversity at HD. According to the results, it seems feasible to rear gilthead sea bream at the on-growing phase at a density up to 36–44 kg m−3 with low or high FM-FO diet without negatively affecting growth, feed efficiency, welfare condition and gut bacterial community.info:eu-repo/semantics/acceptedVersio

    Effects of calcium carbonate inclusion in low fishmeal diets on growth, gastrointestinal pH, digestive enzyme activity and gut bacterial community of European sea bass (Dicentrarchus labrax L.) juveniles

    Get PDF
    Fishmeal (FM) possesses one of the highest buffering capacities in comparison to most alternative vegetable aquafeed ingredients and its decreasing content in current formulations might affect the ideal gastrointestinal environment for digestive enzyme action and gut bacterial community of carnivorous fish species. A study was undertaken, therefore, to assess growth response, gastrointestinal pH, digestive enzyme activity and gut bacterial community of European sea bass (Dicentrarchus labrax L.) juveniles fed low FM diets (10% FM) with or without a feed buffering additive, calcium carbonate (FM10 + B and FM10, respectively) in comparison to a standard FM diet (20% FM, FM20). Three isonitrogenous and isolipidic extruded diets were fed to triplicate fish groups of 80 individuals (initial weight: 23 g) to overfeeding over 64 days. No significant differences due to low FM dietary levels were observed in final body weight, specific growth rate, feed intake, feed and protein efficiency. Low FM diet did not affect gastrointestinal pH in the stomach, anterior intestine, mid-intestine and hindgut at 0, 4, 8 and 12 hours post meal (hpm) while the inclusion of calcium carbonate in low FM diet seems to slightly increase the pH in the hindgut at 12 hpm. The absence of significant differences of pepsin, chymotrypsin, amylase and lipase activity suggests a comparable digestive efficiency among treatments although trypsin activity was slightly reduced in low FM diets after 4 hpm. Decreasing FM content seems to exert an effect on the overall gut bacterial community analysed by next-generation sequencing even if no significant effects on specific bacterial component were detected. The gut bacterial community in all the treatments was particularly rich in lactic acid bacteria such as Lactobacillus spp. which may provide important beneficial functions for the host and be associated with a healthy intestinal epithelium. According to the results, increasing the feed buffering capacity does not seem to improve digestive conditions while it is feasible to include 10% FM dietary level in practical formulation for European sea bass juveniles without negatively affecting growth, feed efficiency and digestive luminal conditions.info:eu-repo/semantics/publishedVersio

    Next-generation sequencing characterization of the gut bacterial community of gilthead sea bream (Sparus aurata, L.) fed low fishmeal based diets with increasing soybean meal levels

    Get PDF
    The present study was carried out to evaluate growth, gut histology and gut bacterial community of gilthead sea bream (Sparus aurata) fed with increasing dietary soybean meal (SBM) levels in a low fishmeal (FM) based diet, in comparison with a control diet. Five isoproteic and isolipidic experimental diets were formulated to contain increasing levels of SBM (0, 100, 200, and 300 g kg 121 named S0, S10, S20 and S30, respectively) with 150 g kg 121 of FM, and one control diet (C) without SBM and containing 350 g kg 121 of FM. Sixty sea bream (initial body weight 75.9 \ub1 1.9 g, n = 900) per tank were reared in a recirculation system at 23.0 \ub1 1.0 \ub0C and fed to satiation. The trial was run in triplicate and lasted 100 days. At the end of the trial fish fed the S30 diet showed a higher (P 64 0.05) specific growth rate (SGR) compared to S0 (SGR, 1.17 \ub1 0.03, 1.20 \ub1 0.01, 1.22 \ub1 0.01, 1.25 \ub1 0.01 and 1.21 \ub1 0.04 for S0, S10, S20, S30 and C, respectively), and a higher feed intake (FI) compared to S0, S10 and S20. Sea bream fed the C diet had a higher (P 64 0.05) FI compared to S0 (FI, 1.40 \ub1 0.01, 1.45 \ub1 0.01, 1.44 \ub1 0.03, 1.51 \ub1 0.03 and 1.46 \ub1 0.02 for S0, S10, S20, S30 and C, respectively). No significant differences in feed conversion rate, protein efficiency ratio, gross protein efficiency and gross lipid efficiency among the treatments were detected. No specific histopathological changes indicative of soy-induced enteritis were observed in the intestine of any fish examined. Gut bacterial community of the distal intestine content was analyzed by Next-Generation Sequencing. At the phylum level, the gut bacterial community was dominated by Firmicutes (relative abundance 71%), while the most represented family was Lactobacillaceae (26%). Even if no significant differences (P 64 0.05) in the gut bacterial community \u3b1 and \u3b2-diversity according to the different diets were detected, Cyanobacteria and Lactobacillaceae progressively increased from diet C to diet S30. In conclusion results of growth, nutrient utilization, gut histology and gut bacterial community indicate that SBM can be successfully incorporated up to a level of 300 g kg 121 with the inclusion of 150 g kg 121 of FM, without any deleterious effects on growth, protein utilization and gut health during the on-growing of sea bream
    corecore