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Abstract 

Knowledge about the nutritional requirements of common sole (Solea solea) is limited 

and no information regarding the optimal dietary lipid level is available yet. Thus, this 

study was undertaken to assess the growth response and feed utilization of common sole 

juveniles fed diets with increasing lipid levels. Four isonitrogenous (59% protein) 

pelletized diets with different dietary lipid levels (8, 12, 16 and 20%; L8, L12, L16 and 

L20, respectively) were fed to triplicate fish groups of 80 individuals to apparent 

satiation over 150 days. A one-way ANOVA, Tukey’s post hoc test and linear 

regression were used to analyse the data (P ≤ 0.05). At the end of the trial, final body 

weight was significantly higher in fish fed L8 (40.7 ± 1.7 g), followed by those fed L12 

(35.1 ± 1.2 g), L16 (27.9 ± 2.5 g) and L20 (22.1 ± 0.3 g). The specific growth rate was 

higher in fish fed L8 and L12, compared to the other treatments, and it was lowest in 

L20. Voluntary feed intake decreased with an increase in the dietary lipid level. The 

feed conversion rate, the protein efficiency ratio and the gross protein efficiency were 

lower in fish fed L20, while no significant differences were observed among L8, L12 

and L16. Gross lipid efficiency was significantly higher in fish fed low lipid diets. 

Histological observations showed that 19 of 36 observed subjects had lipid droplets in 

the cytoplasm of enterocytes at the apex of the mucosal folds and, in some cases, also 

along the entire fold (intestinal steatosis). The number of fish with intestinal steatosis in 

groups L20 and L16 was significantly higher than the number in group L8. 

Ultrastructure showed large electrondense lipid droplets within the cytoplasm of 

enterocytes and warping of the cytoplasmic membrane (steatosis); in some cases, lipid 

droplets were also present within the Golgi apparatus. 
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In conclusion, the results of this trial suggest that the diet for Solea solea juveniles 

should include no more than 12% lipids. Higher lipid inclusions not only led to a 

substantial decline in performance but also affected gut health. This should be taken 

into consideration in formulating specific practical diets for common sole. 

 

Keywords: Solea solea; lipid level; growth; nutrition; histology; ultrastructure 

 

1. Introduction 

 

Common sole (Solea solea) is a promising flatfish species for marine farming, 

especially due to its high market value, high flesh quality and increasing demand from 

consumers (Parma et al., 2013). Over the last few years, several aspects of the species’ 

culture have been developed and optimized, in particular in terms of larviculture and 

larval physiology (Lund et al., 2008; Bonaldo et al., 2011; Ferraresso et al., 2013; 

Parma et al., 2013). However, variable and low growth remains one of the most 

important constraints for commercial sole farming activities (Mas-Muñoz et al., 2011). 

To reach large scale production of this species, some studies on juveniles and adults 

regarding optimal growth temperature (Schram et al., 2013), stocking density (Schram 

et al., 2006; Lund et al., 2013), feeding behaviour and attractants (Reig et al., 2003; 

Mas-Muñoz et al., 2011) have been carried out. Nevertheless, several information about 

the nutritional needs of juveniles of this species is still lacking. In fact, even though the 

protein requirement for maximum protein accretion in common sole has been estimated 

at 57% (Gatta et al., 2011), to our knowledge, no studies concerning the optimal dietary 

lipid level have been carried out for this species.  
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In other flatfish species, Borges et al. (2009) and Dias et al. (2004) have demonstrated a 

low lipid tolerance for Senegalese sole (Solea senegalensis), where diets should include 

no more than 8% lipids. In turbot (Psetta maxima), negative effects were reported at a 

dietary lipid level above 15% (Regost et al., 2001), while high levels of dietary lipids, 

up to 18%, enhanced growth and protein utilization in plaice (Pleuronectes platessa) 

(Cowey et al., 1975). 

Although protein sparing by the increase of dietary lipid level up to an optimal level is 

well documented, the limits to its effectiveness have not been accurately defined for any 

fish species (Sargent et al., 2002). Furthermore, the use of increasingly high-lipid diets 

can have consequences for farmed fish by altering the lipid and fatty acid metabolism of 

the fish with implications for fish health and welfare (Sargent et al., 2002). Information 

on the nutritional status and lipid metabolism in fish species can be achieved thought 

the study of blood metabolites such as serum cholesterol and triglycerides (Borges et al 

2013b; Peres et al 2014).  

Thus, the effects of increasing the dietary lipid level (8 to 20 %) on growth, nutrient 

utilization, blood parameters (total cholesterol and triglycerides) and gut health 

(histology and ultrastructure) in common sole juveniles were studied over 150 days. 

 

2. Materials and methods 

 

2.1 Experimental diets 

 

Four isonitrogenous (59% protein) diets were formulated to contain increasing lipid 

levels (8, 12, 16 and 20%; L8, L12, L16 and L20 respectively). The ingredients and 
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proximate composition of the experimental diets are presented in Table 1. Protein levels 

were defined on the basis of a previous trial carried out in our laboratory highlighting 

dietary protein requirements (Gatta et al., 2011). Increasing lipid levels were obtained 

by increasing fish oil inclusion and lowering the amounts of wheat meal.  

For each diet, the ingredients were mixed and pelleted using a laboratory pelleting 

machine (La Monferrina, Asti, Italy) with a 1.0 mm die. The diets were dried at 45° C 

for 24 h. After drying, diet L20 was further greased apart by adding 5% oil to achieve 

the expected lipid level. The oil was sprayed manually, while diet was mixing using the 

same pelleting machine.  

 

2.2 Experimental conditions  

 

The experiment was carried out at the Laboratory of Aquaculture, Department of 

Veterinary Medical Sciences of the University of Bologna, Cesenatico, Italy. Common 

sole juveniles were obtained from a captive broodstock maintained at the above-

mentioned facility. Before the experiment, the fish were kept in experimental tanks for 

three months and fed commercial diets (Aller Futura ex, Denmark; crude protein 64%, 

crude fat 12%). One week before the start of the trial they were fed with a mixture of 

the four experimental diets. At the beginning of the trial, 80 fish (initial average weight: 

13.8 ± 0.4 g) per tank were randomly distributed into twelve 500-liter square flat bottom 

tanks (bottom surface: 0.64 m
2
). Each diet was administered to triplicate groups, 

assigned in a completely random manner, over 150 days. Tanks were provided with 

natural seawater and connected to a closed recirculating system (overall water volume: 

7,000 L). The rearing system consisted of a mechanical sand filter (0.4 m
3 

of silica sand, 
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0.4–0.8 mm. PTK 1200, Astral Pool, Servaqua S.A. Barsareny, Spain), ultraviolet lights 

(PE 25mJ/cm
2
: 16m

3
 h

-1
, Blaufish, Barcelona, Spain) and a biofilter (PTK 1200, Astral 

Pool, Servaqua S.A. Barsareny, Spain). The water exchange rate per tank was 100% 

every 2 h while the overall water renewal amount in the system was 5% daily. During 

the trial, the temperature was kept constant at 20.0 ± 1.0 °C and the photoperiod was 

maintained at 12 h light and 12 h dark through artificial light. Light intensity was 

regulated at 50 lx, measured on the water surface (Delta Ohm lightmeter HD2302.0; 

Probe LP 471 PHOT; Delta Ohm, Padua, Italy). The oxygen level was kept constant 

(7.5 ± 1.0 ppm) by a liquid oxygen system regulated by a software program (B&G 

Sinergia snc, Chioggia, Italy). A strong aeration (200 l min
-1

) was applied in the stock 

tank to remove CO2. Ammonia (total ammonia nitrogen ≤ 0.1 ppm), nitrite (≤ 0.2 ppm) 

and salinity (20 g L
-1

) were spectrophotometrically (Spectroquant Nova 60, Merck, Lab 

business, Darmstadt, Germany) monitored daily. Sodium bicarbonate was added on a 

daily basis to keep pH constant at 7.8–8.0. 

During the first 35 days, the fish were hand fed twice a day during the week and once 

on Sundays to determine the apparent satiation ration. After day 35, the fish were fed by 

automatic feeders for over 20 h a day
-1

 during the week and over 12 h on Sundays. Each 

day, all tanks were monitored to be certain that all feed was eaten. When some uneaten 

pellets remained at the bottom of the tank, the total amount of feed distributed each day 

was reduced by 10%, until no feed losses were recorded. When no feed losses were 

observed, the amount of food was maintained for four days and then augmented by 10% 

(Borges et al., 2009).  
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Uneaten feed, when present at the end of the meal, was removed and the amount 

estimated by counting each pellet and multiplying the number by the mean weight of a 

single pellet. This result was deducted from the daily feed intake of the tank. 

 

2.3 Sampling 

 

At the beginning and at the end of the experiment, all the fish in each tank were 

individually weighed. The total biomass was also determined at day 35, 70 and 105 by 

bulk weighing. Daily mortality was registered, and dead fish were weighed and 

registered.  

The proximate composition of the carcasses was determined at the beginning of the trial 

on a pooled sample of 30 fish and on a pooled sample of ten fish per tank at the end of 

the trial. Furthermore, at the end of the trial, wet weight and viscera and liver weight 

were individually recorded for ten fish per tank to determine visceral somatic (VSI) and 

hepatosomatic indexes (HSI). At the end of the trial, three fish per tank (nine fish per 

dietary treatment) were sampled for histological examination of the intestines.  

After the end of the trial, the fish left were fed for three more days to perform blood 

analyses of serum cholesterol and triglycerides. Blood from 14 fish per tank was 

collected six h postprandial from the caudal vein and then pooled into one sample (one 

pool per tank). Samples were then centrifuged (3,000 g for 10 min at 4 °C) and serum 

aliquots were stored at 4 °C and analysed during the same day. 

All experimental procedures were evaluated and approved by the Ethical-scientific 

Committee for Animal Experimentation of the University of Bologna in accordance 



 

8 

with European directive 2010/63/UE on the protection of animals used for scientific 

purposes. 

 

2.4 Chemical analyses  

 

Diets and whole body samples were analysed for proximate composition. Moisture 

content was obtained by weight loss after drying samples in a stove at 105 °C until a 

constant weight was achieved. Crude protein was determined as total nitrogen (N) by 

using the Kjeldahl method and multiplying N by 6.25. Total lipids were determined 

according to Bligh and Dyer’s (1959) extraction method. Ash content was estimated by 

incineration to a constant weight in a muffle oven at 450 °C. Gross energy was 

determined by a calorimetric bomb (Adiabatic Calorimetric Bomb Parr 1261; PARR 

Instrument, IL, USA). Total cholesterol (OSR6116) and triglycerides (OSR60118) of 

plasma were determined using an enzymatic colorimetric test (Beckman Coulter 

Olympus AU400 analyzers, Fullerton, CA, USA). 

 

2.5 Calculations 

 

The formulae employed were as follows: 

Specific growth rate (SGR) (day
-1

) = 100 * (ln FBW- ln IBW) / days (where FBW and 

IBW represent the final and the initial body weights). Feed intake (FI) (% day
-1

) = 100 * 

(crude feed intake/ABW/days) (where ABW (g) = average body weight = (FBW + 

IBW) / 2). Feed conversion ratio (FCR) = feed intake/weight gain. Daily nutrient intake 

(NI) (g or KJ/kg/d) = nutrient intake/ABW/day. VSI (%) = 100 * (viscera weight/body 
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weight). HSI (%) = 100 * (liver weight/body weight). Protein efficiency ratio (PER) = 

(FBW – IBW) / protein intake. Gross protein efficiency (GPE) (%) = 100 * [(% final 

body protein * FBW) - (% initial body protein * IBW)] / total protein intake fish
 -1

. 

Gross lipid efficiency (GLE) (%) = 100 * [(% final body lipid * FBW) - (% initial body 

lipid * IBW)] / total lipid intake fish
-1

. The survival rate (SR) was calculated as a 

percentage of the initial number of fish.  

 

2.6 Histology and ultrastructure  

 

Samples of proximal, middle and distal intestine were processed for routine histology 

and evaluated under a light microscope in a blinded fashion. Ultrastructure deepening 

was performed on a selection of subjects based on histological evidence of pathological 

changes. Transmission electron microscopy (TEM) was performed from formalin-fixed 

samples, which were dehydrated in a graded alcohols sequence and embedded in 

Durcupan AcM resin (Sigma–Aldrich, St Louis, MO, USA). Semithin sections (1 µm) 

were stained with toluidine blue and examined by light microscopy. Selected ultrathin 

sections (90 nm) were cut and stained with uranyl acetate and lead citrate. An 

ultrastructural observation was made with a Philips TEM 208 transmission electron 

microscope (Philips, Eindhoven, Holland) operating at 100 kV. 

 

2.7 Statistical analysis 

 

All data are presented as mean ± standard deviation (SD) of three replicate groups. All 

data except for histological data were analysed by a one-way ANOVA followed by a 
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Tukey’s multiple comparison test. Histological data were analysed using Pearson’s χ
2
 

test with Yates’ continuity correction. All statistical analyses were performed using 

GraphPad Prism 6.0 for Windows (Graph Pad Software, San Diego, CA, USA). A 

linear regression analysis was conducted to analyse growth performance indices and 

feed utilization indices according to dietary lipid level and judged by the adjusted 

coefficient of determination (R
2
). The differences among treatments were considered 

significant at P ≤ 0.05. 

 

3. Results  

 

3.1 Growth  

 

Survival rate, growth performance and daily nutrient intake are summarized in Table 2. 

No significant differences were recorded among groups (P = 0.0572). Final body 

weight, SGR and FI were inversely correlated to dietary lipid level (P < 0.0001), 

whereas the FCR was directly correlated (P < 0.001). The final body weight was 

significantly higher in fish fed diet L8 (40.7 ± 1.7), followed by those fed L12 (35.1 ± 

1.2 g), L16 (27.9 ± 2.5 g) and L20 (22.1 ± 0.3 g). The lowest SGR was observed in fish 

fed L20, followed by fish fed L16, whereas fish fed L12 and L8 scored the highest. The 

FCR of fish fed L20 was higher than that of the other groups. FI was significantly lower 

when dietary lipid levels increased. From the group fed L8 to that fed L20, the protein 

intake significantly decreased whereas the lipid intake increased. Energy intake was 

significantly higher in fish fed L8 and L12 as compared to those fed L16 and L20.  
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Data on VSI, HSI, whole body composition and nutritional indices are shown in Table 

3. VSI varied from 3.95 to 4.57%, a result significantly higher in fish fed high-lipid 

diets (L16 and L20) than in those fed low-lipid diets (L8 and L12). No significant 

differences were found in HSI. Whole body protein content was significantly lower in 

L20 in comparison with the other groups. Whole body lipid content ranged between 

5.6% (L16) and 6.7% (L12), without significant differences among treatments. PER and 

GPE in fish fed L20 were significantly lower in comparison with that in the other 

groups. GLE was significantly higher in fish fed low-lipid diets (L8 and L12) than in 

those fed high-lipid diets (L16 and L20). 

Serum total cholesterol and triglycerides concentrations are shown in Figure 1. No 

significant differences among treatments were found in total cholesterol (P = 0.1704) 

and triglycerides (P = 0.2232) concentrations even though L20 displayed lower values 

compared to the other groups.  

 

3.2 Histology and ultrastructure  

 

Histological observations showed lipid droplets in the cytoplasm of enterocytes at the 

apex of the mucosal folds and in some cases also along the entire fold (intestinal 

steatosis) (Fig. 2 A, D) in 19 of 36 subjects; the remaining 17 subjects did not show any 

pathological changes, and supranuclear vacuolation, mainly at the apex of mucosal 

folds, was present as a sign of normal absorptive activity.  

The statistical correlation between histological observation and diet treatments is 

presented in Table 4. The number of fish with intestinal steatosis in groups L20 and L16 

was significantly higher than that in group L8.  
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Ultrastructure showed large electrondense lipid droplets within the cytoplasm of 

enterocytes and warping of the cytoplasmic membrane (steatosis); in some cases, lipid 

droplets were also present within the Golgi apparatus (Fig. 2 E, F). In some cells, 

despite no evidence of cytoplasmic lipid droplets, several electrondense lamellar and 

whorled myelin bodies (myelinosomes), “zebra type,” consistent with phospholipids 

were seen within lysosomes (Ghadially, 1988) (Fig. 2 B, C).  

 

4. Discussion 

 

Increasing the dietary lipid level from 8% to 20% had an overall impact on performance 

and gut health of the common sole juveniles. In particular, when comparing the 

different treatments, increasing the percentage of the dietary lipid level above 12% 

resulted in decreased growth. Also, in other flatfish, such as Senegalese sole (Dias et al., 

2004; Borges et al., 2009) and turbot (Regost et al., 2001), increasing dietary lipid levels 

tends to depress growth performance. On the contrary, high-lipid diets improved growth 

in different pelagic marine species, as observed in parr (Salmo salar) (Nordgarden et al., 

2002), Pacific bluefin tuna juvenile (Thunnus orientalis) (Biswas et al., 2009) and 

gilthead sea bream (Sparus aurata) (Mongile et al., 2014).  

In our trial, the decreased growth seemed due both to a decreased FI and an increased 

FCR in fish fed high lipid diets.  

The decline in FI is in disagreement with a previous study on Senegalese sole that 

reported an increase in FI with increasing the level of lipids from 4 to 20% (Borges et 

al., 2009). The reduced FI observed in our study may be related to reduced feed 

palatability. Different authors have reported that the palatability of feed is one of the 
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major factors determining feed acceptance (de la Higuera, 2001; Glencross et al., 2007). 

Several research papers reported palatability problems in sole when fed fishmeal based 

feed. In fact, the trophic profile for common sole is mainly composed of polichaeta and 

molluscs, as well as crustaceans, while fish are not present in the natural diet of sole 

(Reig et al., 2003). Hence, the decreased feed intake observed in our study may be 

related to the increased levels of fish oil, which could have reduced feed palatability due 

to the organoleptic features of the oil (Reig et al., 2003). 

Another explanation for the trend of FI may be due to the view that fish, like 

homeothermic animals, adapt feed intake to meet their energy requirements (Mongile et 

al., 2014). Feed intake depends upon the dietary digestible energy content (Lupatsch et 

al., 2001), and in the present study the high lipid diets had significantly higher energy 

contents. Therefore, sole may have adjusted feed intake to reduce energy intake. 

Furthermore, Borges et al. (2013b) suggested a low daily metabolic energy budget in 

Senegalese sole. Similarly, common sole in their natural habitat remain inactive, buried 

in the sand the whole day, with a passive behaviour and carry out all their activity only 

during the night (Reig et al., 2003), suggesting low energy requirements.  

Similarly to FI, a worsening in FCR was observed in fish fed high lipid diets. Indeed, 

the FCR was significantly higher in fish fed L20 as compared to the other treatments, 

suggesting a negative influence of high lipid levels on nutrient utilization. This result is 

confirmed by a significantly reduced PER and GPE in L20 as compared to the other 

groups. In addition the results of GLE also confirm that lipids are not efficiently used 

for energy production and a dietary inclusion higher than 12% significantly depressed 

lipid utilization. It is well known that significant protein sparing can be achieved in 

many fish species by increasing dietary digestible energy levels in the diet through the 
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incorporation of fats and digestible carbohydrates (Rueda-Jasso et al., 2004). On the 

contrary, in our study, lipids in common sole not only were not efficiently used for 

energy production and protein sparing, but high levels also had a negative impact on gut 

health.  

In fact, moderate to severe intestinal steatosis was found in fish fed the high lipids diets 

(L16 and L20). Moreover, the ultrastructure displayed a certain cellular engulfment due 

to lipid overload; large electrondense lipid droplets (triglycerides) were found in the 

cytoplasm of enterocytes and in the Golgi apparatus, while myelinosomes (stacked 

phospholipids) were found in lysosomes (Ghadially, 1988). 

A study on Solea senegalensis fed two different lipid levels, which included histology 

and morphometry of the intestine, found a significant increase in goblet cell number in a 

higher lipid level diet (Borges et al., 2013b). In our study, there was no evidence of 

goblet cell hyperplasia in any of the treatments. To the best of our knowledge, there are 

few nutritional studies on lipid requirements that include the ultrastructure of fish 

intestine only studies regarding the substitution of fish oil with vegetable oils. Caballero 

et al. (2003) and Olsen et al. (2000) found lipid droplet accumulation in enterocytes and 

in intracellular spaces in sea bream (Sparus aurata) fed soybean oil and in Arctic char 

(Salvelinus alpinus L.) fed linseed oil. In our study, the accumulation of lipid droplets in 

intercellular spaces was not detected. This also applied to necrotic changes; on the other 

hand, a marked cell degeneration was seen during histological observation. 

Regarding plasma total cholesterol and triglycerides levels, the range of values found in 

our study was similar to that obtained by Valente et al. (2011) and Borges et al. (2013b) 

for Senegalese sole when fed diets with two different lipid levels. Similar to our 

findings, total cholesterol did not show any variations at the same sampling time (six 
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hours after feeding) in both trials. On the other hand, triglycerides levels increased in 

fish fed the high lipid diet.  

In our trial, high lipid diets not only affected the growth, but also the body composition. 

Indeed, whole body protein content was significantly lower in L20, providing additional 

evidence that dietary lipids do not favour protein accretion. Campos et al. (2010) 

observed a decrease in the expression of myogenic regulatory factors and myosins in the 

muscle of Senegalese sole fed increasing dietary lipid levels, supporting somehow the 

hypothesis that high lipid levels depress growth by reducing protein accretion. 

Nevertheless, whole body lipid content varied from 5.6 to 6.7 %, with no significant 

differences among treatments. The present work clearly showed that common sole is a 

lean fish with low body fat contents and with a scarce capacity to accumulate fat even 

when fed with high lipid diets, as already observed in Senegalese sole (Borges et al., 

2009). 

Regarding VSI, values were lower in the sole fed the low lipid diets than in the sole fed 

the high lipid diets. Borges et al. (2009) have also reported an increased VSI in 

Senegalese sole fed diets with lipid content above 16%. Moreover, the authors reported 

a two-fold increase in intestinal lipid content in Senegalese sole fed 16 and 20% dietary 

lipid levels as compared to those fed 4% lipid diets. In the present study no differences 

in HSI among treatments were found. These results are in agreement with a previous 

experiment on Senegalese sole where fish fed 4 and 17% lipid level diets did not have 

any changes in HSI levels (Borges et al., 2013a).  

In conclusion, the results of this trial suggest that the diet for Solea solea juveniles 

should include no more than 12% lipids. Higher lipid inclusions not only led to a 
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substantial decline in performance but also affected gut health. This should be taken 

into consideration in formulating specific practical diets for common sole. 
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Figure captions 

 

Figure 1. Serum triglycerides and cholesterol levels 5 h postprandial. Data are given as 

the mean ± SD from triplicate groups.  

 

Figure 2. A, B, C moderate steatosis. A) histological section shows some lipid droplets 

in the cytoplasm of apical enterocytes (H&E, 50 µm); B) ultrastructure shows several 

electrondense lamellar and whorled myelin bodies (myelinosomes) (arrow) in 

lysosomes consistent with phospholipids (bar=10 µm); C) higher magnification displays 

myelinosomes, “zebra type” (arrow), characterized by stacked lamellar structures 

(bar=1 µm).
 
D, E, F severe steatosis. D) histological section shows lipid droplets in the 

cytoplasm of enterocytes along the entire intestinal fold (H&E, 50 µm); E) 

ultrastructure shows large electrondense lipid droplets occupying the cytoplasm (arrow) 

and warping of the cytoplasmic membrane (bar=5 µm); F) higher magnification 

displays lipid droplets within the Golgi apparatus (arrow) (bar=2 µm). 
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Table 1 Ingredients and proximate composition of the experimental diets 
 Experimental diet 

L8 L12 L16 L20 

Dietary ingredients (%) 

    Fishmeal 35.0 35.0 35.0 35.0 

    Pea protein concentrate 20.0 20.0 20.0 20.0 

    Wheat gluten 20.0 20.0 20.0 20.0 

    Mussel meal 5.0 5.0 5.0 5.0 

    Fish oil 0 4.0 8.0 12.0 

    Wheat meal 19.0 15.0 11.0 7.0 

    Mix vit-min
1 

1.0 1.0 1.0 1.0 

Proximate composition (% or specified) 

    Crude protein 60.2 59.6 59.8 57.8 

    Total lipids  8.0 12.6 15.5 19.4 

    Ash  7.5 7.4 7.4 7.0 

    Moisture  3.8 4.5 4.5 3.9 

    Gross energy (KJ/g)  19.9 21.1 22.2 23.6 
1
Vitamins (mg kg

-1
 diet or specified): retinol acetate, 18,000 (IU kg

-1
 diet); cholecalciferol, 2,000 (IU 

kg
-1

 diet); alpha tocopherol acetate, 35; sodium menadione bisulphate, 10; thiamin-HCl, 15; 

riboflavin, 25; calcium pantothenate, 50; nicotinic acid, 200; pyridoxine HCl, 5; folic acid 10; 

cyanocobalamin, 0.02; biotin, 1.5; ascorbic acid, 400; inositol, 400, choline chloride (50%), 2000. 

Minerals (mg kg
-1

 diet or specified): cobalt sulphate, 1.91; copper sulphate, 19.6; iron sulphate, 200; 

sodium fluoride, 2.21; potassium iodide, 0.78; magnesium oxide, 830; manganese oxide, 26; sodium 

selenite, 0.66; zinc oxide, 37.5; dibasic calcium phosphate, 5.93 (g kg
-1

 diet); potassium chloride, 

1.15 (g kg
-1

 diet); sodium chloride, 0.40 (g kg
-1

 diet). 
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Table 2 Growth performance, survival rate and daily nutrient intake of sole fed the experimental diets  

 Experimental diet 

L8 L12 L16 L20 
Linear regression 

line 
r² P 

Growth 

   IBW (g) 13.8 ± 0.4 13.8 ± 0.4 13.8 ± 0.4 13.8 ± 0.4    

   FBW (g) 40.7 ± 1.7
d
 35.1 ± 1.2

c
 27.9 ± 2.5

b
 22.1 ± 0.3

a
 Y = 53.58 – 1.582x 0.96 < 0.0001 

   SGR (day
-1

) 0.71 ± 0.03
c
 0.63 ± 0.03

c
 0.48 ± 0.05

b
 0.30 ± 0.01

a
 Y = 1.015 – 0.035x 0.94 < 0.0001 

   FI (% day
-1

) 0.88 ± 0.01
d
 0.78 ± 0.02

c
 0.69 ± 0.02

b
 0.63 ± 0.01

a
 Y = 1.037 – 0.021x 0.97 < 0.0001 

   FCR 1.32 ± 0.05
a
 1.35 ± 0.04

a
 1.63 ± 0.11

a
 2.66 ± 0.29

b
 Y = 0.233 + 0.108x 0.72 < 0.001 

   Survival 100 ± 0.0 100 ± 0.0 98 ± 3.5 92 ± 9.2 Y = 106.6 – 0.650x 0.25 0.0572 

Nutrient daily intake (g or kJ/kg ABW / day) 

   Protein 5.27 ± 0.07
d
 4.68 ± 0.15

c
 4.15 ± 0.13

b
 3.62 ± 0.07

a
 Y = 6.346 – 0.137x 0.98 < 0.0001 

   Lipid 0.70 ± 0.01
a
 0.99 ± 0.03

b
 1.07 ± 0.03

c
 1.22 ± 0.02

d
 Y = 0.425 + 0.041x 0.92 < 0.0001 

   Energy 174.3 ± 2.19
b
 165.8 ± 5.21

b
 153.8 ± 4.74

a
 147.5 ± 2.98

a
 Y = 192.6 – 2.306x 0.89 < 0.0001 

Data are given as the mean (n=3; n=80 for IBW and FBW) ± SD. In each line, different superscript letters indicate significant 

differences among treatments (P ≤ 0.05). 

IBW, Initial body weight. 

FBW, Final body weight. 

SGR, Specific growth rate. 

FI, Feed intake. 

FCR, Feed conversion rate.  
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Table 3 Viscerosomatic index (VSI), hepatosomatic index (HSI), body composition and nutritional indices of 

common sole fed the experimental diets 

 Experimental diet 
L8 L12 L16 L20 Linear regression line r² P 

Somatic indices 

     VSI 4.04 ± 0.36
a
 3.95 ± 0.32

a
 4.57 ± 0.19

b
 4.55 ± 0.23

b
 Y = 3.525 + 0.054x 0.37 < 0.05 

     HSI 1.68 ± 0.15 1.46 ± 0.16 1.63 ± 0.17 1.54 ± 0.26 Y = 1.660 – 0.006x – 0.08 0.6446 

Whole body composition  

     Moisture 73.5 ± 0.22
b
 72.6 ± 0.37

c
 72.7 ± 0.64

c
 74.5 ± 0.41

a
 Y = 72.23 + 0.078x 0.08 0.1931 

     Crude Protein 17.4 ± 0.19
a
 17.2 ± 0.41

a
 17.0 ± 0.38

a
 16.3 ± 0.57

b
 Y = 18.17 – 0.086x 0.46 < 0.001 

     Total Lipids 5.9 ± 0.55 6.7 ± 0.76 5.6 ± 0.37 6.3 ± 1.17 Y = 6.035 + 0.007x – 0.09 0.8512 

     Ash 2.3 ± 0.09
b
 2.7 ± 0.13

a
 2.1 ± 0.16

b
 2.9 ± 0.31

a
 Y = 2.00 – 0.035x 0.12 0.1436 

Nutritional indices 

     PER 1.2 ± 0.05
b
 1.3 ± 0.05

b
 1.1 ± 0.10

b
 0.8 ± 0.03

a
 Y = 1.601 – 0.035x 0.71 < 0.001 

     GPE 22.0 ± 0.9
b
 22.2 ± 1.1

b
 19.2 ± 2.0

b
 12.9 ± 1.9

a
 Y = 29.59 – 0.752x 0.70 < 0.001 

     GLE 58.5 ± 3.5
b
 46.6 ± 7.3

b
 26.5 ± 3.5

a
 21.1 ± 3.8

a
 Y = 84.49 – 3.306x 0.89 < 0.0001 

Data are given as the mean (n=3;n=30 for VSI and HSI)± SD. In each line, different superscript letters indicate significant differences 

among treatments (P ≤ 0.05). 

VSI, Visceral somatic index. 

HIS, Hepato somatic index. 

PER, Protein efficiency ratio ((FBW-IBW)/protein intake). 

GPE, Gross protein efficiency (100*[(%final body protein * FBW)-(%initial body protein * IBW)]/total protein intake fish
 -1

). 

GLE, Gross lipid efficiency (100*[(%final body lipid * FBW)-(%initial body lipid * IBW)]/total lipid intake fish
-1

).  
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Table 4 Number of common sole per dietary treatment that displayed 

intestinal steatosis (n=9) 
                        Morphological changes of enterocytes  

 Normal Steatosis  χ² P 

Treatments 

L8 8 1 a 14.60 0.0022 

L12 6 3 ab 
L16 1 8 b 
L20 2 7 b 
Different superscript letters indicate significant differences among treatments (P ≤ 0.05). 
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Figure 1 
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Figure 2 

 

 


