21 research outputs found

    Sequential and Batch Processing Methods of the EBP Learning Algorithm

    Get PDF
    Placental abnormalities can cause Pregnancy-Associated Disorders, including preeclampsia, intrauterine growth restriction, and placental insufficiency, resulting in complications for both the mother and fetus. Trophoblast cells within the labyrinthine layer of the placenta facilitate the exchange of nutrients, gases, and waste between mother and fetus; therefore, the development of this cell layer is critical for fetal development. As trophoblast cells differentiate, it is assumed their metabolism changes with their energy requirements. We hypothesize that proper regulation of trophoblast metabolism is a key component of normal placental development; therefore, we examined the role of AMP-activated kinase (AMPK, PRKAA1/2), a sensor of cellular energy status. Our previous studies have shown that AMPK knockdown alters both trophoblast differentiation and nutrient transport. In this study, AMPKα1/2 shRNA was used to investigate the metabolic effects of AMPK knockdown on SM10 placental labyrinthine progenitor cells before and after differentiation. Extracellular flux analysis confirmed that AMPK knockdown was sufficient to reduce trophoblast glycolysis, mitochondrial respiration, and ATP coupling efficiency. A reduction in AMPK in differentiated trophoblasts also resulted in increased mitochondrial volume. These data indicate that a reduction in AMPK disrupts cellular metabolism in both progenitors and differentiated placental trophoblasts. This disruption correlates to abortive trophoblast differentiation that may contribute to the development of Pregnancy-Associated Disorders

    The genetic architecture of the human cerebral cortex

    Get PDF
    The cerebral cortex underlies our complex cognitive capabilities, yet little is known about the specific genetic loci that influence human cortical structure. To identify genetic variants that affect cortical structure, we conducted a genome-wide association meta-analysis of brain magnetic resonance imaging data from 51,665 individuals. We analyzed the surface area and average thickness of the whole cortex and 34 regions with known functional specializations. We identified 199 significant loci and found significant enrichment for loci influencing total surface area within regulatory elements that are active during prenatal cortical development, supporting the radial unit hypothesis. Loci that affect regional surface area cluster near genes in Wnt signaling pathways, which influence progenitor expansion and areal identity. Variation in cortical structure is genetically correlated with cognitive function, Parkinson's disease, insomnia, depression, neuroticism, and attention deficit hyperactivity disorder

    Hypoxia Inducible Factor 1 Alpha (HIF-1a): A Major Regulator of Placental Development

    Get PDF
    Hypoxia-inducible factor-1 alpha (HIF-1a) is a critical component of the cellular oxygen-sensing machinery and is essential for placental formation and embryonic survival. In this study, we promoted prolonged expression of HIF-1a, by using a form that is insensitive to oxygen, denoted as CA-HIF-1a. In order to have continual placental specific expression of the CA-HIF-1a, lentiviral infection was performed on embryos at the blastocyst stage of development and transferred into pseudo-pregnant mothers. Placental analysis was performed via in situ hybridization on embryonic day 14.5 (E14.5) to determine the effects of CA-HIF-1a prolonged expression. Data indicate that prolonged activity of CA-HIF-1a restricted to trophoblast cells in the mouse placenta results in the inability of cells to advance from their progenitor states, failure of the placenta to organize properly, and failure of trophoblasts to remodel the maternal arteries. Since HIF-1a has the ability to cause developmental placental disruption, its regulation in the placenta could be key in multiple pregnancy-associated disorders such as pre-eclampsia and intrauterine growth restriction (IUGR)

    Id2 Mediates Differentiation of Labyrinthine Placental Progenitor Cell Line, SM10

    No full text
    The placenta is an organ that is formed transiently during pregnancy, and appropriate placental development is necessary for fetal survival and growth. Proper differentiation of the labyrinthine layer of the placenta is especially crucial, as it establishes the fetal–maternal interface that is involved in physiological exchange processes. Although previous studies have indicated the importance of inhibitor of differentiation/inhibitor of DNA binding-2 (Id2) helix-loop-helix transcriptional regulator in mediating cell differentiation, the ability of Id2 to regulate differentiation toward the labyrinthine (transport) lineage of the placenta has yet to be determined. In the current study, we have generated labyrinthine trophoblast progenitor cells with increased (SM10-Id2) or decreased (SM10-Id2-shRNA) Id2expression and determined the effect on TGF-β-induced differentiation. Our Id2 overexpression and knockdown analyses indicate that Id2 mediates TGF-β-induced morphological differentiation of labyrinthine trophoblast cells, as Id2 overexpression prevents differentiation and Id2 knockdown results in differentiation. Thus, our data indicate that Id2 is an important molecular mediator of labyrinthine trophoblast differentiation. An understanding of the regulators of trophoblast progenitor differentiation toward the labyrinthine lineage may offer insights into events governing pregnancy-associated disorders, such as placental insufficiency, fetal growth restriction, and preeclampsia

    TGF-β induces Smad2 phosphorylation, ARE induction, and trophoblast differentiation

    No full text
    Background: Transforming growth factor beta (TGF-β) signaling has been shown to control a large number of critical cellular actions such as cell death, differentiation, and development and has been implicated as a major regulator of placental function. SM10 cells are a mouse placental progenitor cell line, which has been previously shown to differentiate into nutrient transporting, labyrinthine-like cells upon treatment with TGF-β. However, the signal transduction pathway activated by TGF-β to induce SM10 progenitor differentiation has yet to be fully investigated. Materials and Methods: In this study the SM10 labyrinthine progenitor cell line was used to investigate TGF-β induced differentiation. Activation of the TGF-β pathway and the ability of TGF-β to induce differentiation were investigated by light microscopy, luciferase assays, and Western blot analysis. Results and Conclusions: In this report, we show that three isoforms of TGF-β have the ability to terminally differentiate SM10 cells, whereas other predominant members of the TGF-β superfamily, Nodal and Activin A, do not. Additionally, we have determined that TGF-β induced Smad2 phosphorylation can be mediated via the ALK-5 receptor with subsequent transactivation of the Activin response element. Our studies identify an important regulatory signaling pathway in SM10 progenitor cells that is involved in labyrinthine trophoblast differentiation

    TGF-β induces Smad2 phosphorylation, ARE induction, and trophoblast differentiation

    No full text
    Background: Transforming growth factor beta (TGF-β) signaling has been shown to control a large number of critical cellular actions such as cell death, differentiation, and development and has been implicated as a major regulator of placental function. SM10 cells are a mouse placental progenitor cell line, which has been previously shown to differentiate into nutrient transporting, labyrinthine-like cells upon treatment with TGF-β. However, the signal transduction pathway activated by TGF-β to induce SM10 progenitor differentiation has yet to be fully investigated. Materials and Methods: In this study the SM10 labyrinthine progenitor cell line was used to investigate TGF-β induced differentiation. Activation of the TGF-β pathway and the ability of TGF-β to induce differentiation were investigated by light microscopy, luciferase assays, and Western blot analysis. Results and Conclusions: In this report, we show that three isoforms of TGF-β have the ability to terminally differentiate SM10 cells, whereas other predominant members of the TGF-β superfamily, Nodal and Activin A, do not. Additionally, we have determined that TGF-β induced Smad2 phosphorylation can be mediated via the ALK-5 receptor with subsequent transactivation of the Activin response element. Our studies identify an important regulatory signaling pathway in SM10 progenitor cells that is involved in labyrinthine trophoblast differentiation

    Placental-Specific Hypoxia Inducible Factor-1 alpha as a Model of Preeclampsia

    No full text
    Many pregnancy-associated disorders occur as a result of inappropriate placental development. Preeclampsia, which occurs in 5-8% of all births, is characterized by the lack of maternal spiral artery remodeling, maternal hypertension, low birth weight, and almost always results in premature birth

    Placental-Specific Hypoxia Inducible Factor-1 alpha as a Model of Preeclampsia

    No full text
    Many pregnancy-associated disorders occur as a result of inappropriate placental development. Preeclampsia, which occurs in 5-8% of all births, is characterized by the lack of maternal spiral artery remodeling, maternal hypertension, low birth weight, and almost always results in premature birth

    AMPK Knockdown in Placental Labyrinthine Progenitor Cells Results in Restriction of Critical Energy Resources and Terminal Differentiation Failure

    No full text
    Placental abnormalities can cause Pregnancy-Associated Disorders, including preeclampsia, intrauterine growth restriction, and placental insufficiency, resulting in complications for both the mother and fetus. Trophoblast cells within the labyrinthine layer of the placenta facilitate the exchange of nutrients, gases, and waste between mother and fetus; therefore, the development of this cell layer is critical for fetal development. As trophoblast cells differentiate, it is assumed their metabolism changes with their energy requirements. We hypothesize that proper regulation of trophoblast metabolism is a key component of normal placental development; therefore, we examined the role of AMP-activated kinase (AMPK, PRKAA1/2), a sensor of cellular energy status. Our previous studies have shown that AMPK knockdown alters both trophoblast differentiation and nutrient transport. In this study, AMPKα1/2 shRNA was used to investigate the metabolic effects of AMPK knockdown on SM10 placental labyrinthine progenitor cells before and after differentiation. Extracellular flux analysis confirmed that AMPK knockdown was sufficient to reduce trophoblast glycolysis, mitochondrial respiration, and ATP coupling efficiency. A reduction in AMPK in differentiated trophoblasts also resulted in increased mitochondrial volume. These data indicate that a reduction in AMPK disrupts cellular metabolism in both progenitors and differentiated placental trophoblasts. This disruption correlates to abortive trophoblast differentiation that may contribute to the development of Pregnancy-Associated Disorders

    AMPK Knockdown in Placental Labyrinthine Progenitor Cells Results in Restriction of Critical Energy Resources and Terminal Differentiation Failure

    No full text
    Placental abnormalities can cause Pregnancy-Associated Disorders, including preeclampsia, intrauterine growth restriction, and placental insufficiency, resulting in complications for both the mother and fetus. Trophoblast cells within the labyrinthine layer of the placenta facilitate the exchange of nutrients, gases, and waste between mother and fetus; therefore, the development of this cell layer is critical for fetal development. As trophoblast cells differentiate, it is assumed their metabolism changes with their energy requirements. We hypothesize that proper regulation of trophoblast metabolism is a key component of normal placental development; therefore, we examined the role of AMP-activated kinase (AMPK, PRKAA1/2), a sensor of cellular energy status. Our previous studies have shown that AMPK knockdown alters both trophoblast differentiation and nutrient transport. In this study, AMPKα1/2 shRNA was used to investigate the metabolic effects of AMPK knockdown on SM10 placental labyrinthine progenitor cells before and after differentiation. Extracellular flux analysis confirmed that AMPK knockdown was sufficient to reduce trophoblast glycolysis, mitochondrial respiration, and ATP coupling efficiency. A reduction in AMPK in differentiated trophoblasts also resulted in increased mitochondrial volume. These data indicate that a reduction in AMPK disrupts cellular metabolism in both progenitors and differentiated placental trophoblasts. This disruption correlates to abortive trophoblast differentiation that may contribute to the development of Pregnancy-Associated Disorders
    corecore