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ABSTRACT 

 

Albers, Renee Elizabeth. M.S., Microbiology and Immunology Program, Wright State 
University, 2013. Hypoxia Inducible Factor 1 Alpha (HIF-1α): A Major Regulator of 
Placental Development.  

 

Hypoxia-inducible factor-1 alpha (HIF-1α) is a critical component of the cellular 

oxygen-sensing machinery and is essential for placental formation and embryonic 

survival.  In this study, we promoted prolonged expression of HIF-1α, by using a form 

that is insensitive to oxygen, denoted as CA-HIF-1α.  In order to have continual placental 

specific expression of the CA-HIF-1α, lentiviral infection was performed on embryos at 

the blastocyst stage of development and transferred into pseudo-pregnant mothers.  

Placental analysis was performed via in situ hybridization on embryonic day 14.5 (E14.5) 

to determine the effects of CA-HIF-1α prolonged expression.  Data indicate that 

prolonged activity of CA-HIF-1α restricted to trophoblast cells in the mouse placenta 

results in the inability of cells to advance from their progenitor states, failure of the 

placenta to organize properly, and failure of trophoblasts to remodel the maternal arteries.  

Since HIF-1α has the ability to cause developmental placental disruption, its regulation in 

the placenta could be key in multiple pregnancy-associated disorders such as pre-

eclampsia and intrauterine growth restriction (IUGR).  

 

 

 

 



	
  iv 

TABLE OF CONTENTS 
 

I. INTRODUCTION ........................................................................................................... 1 
 
Placental importance ....................................................................................................... 1 
 
Pre-eclampsia .................................................................................................................. 1 
 
Placental specific gene transfer ....................................................................................... 2 
 
Placental organization ..................................................................................................... 2 
 
Placental oxygen and development ................................................................................. 8 
 
Hypoxia inducible factor 1 alpha (HIF-1α) ..................................................................... 8 
 
HIF-1α related gene knock-out ..................................................................................... 11 
 
Summary ....................................................................................................................... 14 

 

II. MATERIALS AND METHODS ................................................................................. 16 
 
Materials ........................................................................................................................ 16 
 
Cloning and Cell Culture ............................................................................................... 16 
 
Western blotting (Kashmira Kulkarni unpublished methods) ....................................... 17 
 
Luciferase assay (Kashmira Kulkarni unpulblished methods) ...................................... 19 
 
Lentiviral production ..................................................................................................... 19 
 
Lentiviral concentration and titering ............................................................................. 20 
 
Blastocyst Isolation and Culture ................................................................................... 20 
 
Blastocysts infection ..................................................................................................... 21 
 
Embryo transfer ............................................................................................................. 22 



	
  v 

 
Immunocytochemistry (Kashmira Kulkarni unpulblished methods) ............................ 22 
 
Probes ............................................................................................................................ 23 
 
Tissue preparation and in situ hybridization ................................................................. 24 
 
Animal use ..................................................................................................................... 28 

 

III. RESULTS ................................................................................................................... 29 
 
Placental specific expression ......................................................................................... 29 
 
HIF-1α prolonged expression ........................................................................................ 36 
 
Inhibition of differentiation ........................................................................................... 39 
 
Decrease in branching morphogenesis .......................................................................... 44 
 
Placental disorganization ............................................................................................... 44 
 
Decrease in maternal artery remodeling ........................................................................ 49 

 

IV. DISCUSSION ............................................................................................................. 53 
 
Altered Morphology ...................................................................................................... 53 
 
Maternal artery remodeling ........................................................................................... 54 
 
Future studies ................................................................................................................ 55 

 

V. APPENDIX .................................................................................................................. 57 
 
Abbreviations ................................................................................................................ 57 

 

VI. REFERENCES ........................................................................................................... 60 
 



	
  vi 

LIST OF FIGURES 

Figure 1. Blastocyst organization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 

 

Figure 2. Organization of the rodent placenta. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6 

 

Figure 3. HIF-1α activation and inactivation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10 

 

Figure 4. Oxygen insensitive form of HIF-1α, CA- HIF-1α, is always active . . . . . . . . 12 

 

Figure 5. Diagram of a riboprobe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 

 

Figure 6. Trophoblast specific GFP expression after infection with Lv-CMV-GFP-V5 at 

the blastocyst stage. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 

 

Figure 7. Analysis for placental specific expression of the GFP at E10.5 after infection 

with Lv-CMV-GFP-V5 at the blastocyst (E3.5) stage of development. . . . . . . . . . . . . .  32 

 

Figure 8. Immunohistochemical analysis of V5 epitope tag expression in placenta 

infected with Lv-CMV-GFP-V5 virus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 

 



	
  vii 

Figure 9. HIF-1α3XSDM gene was cloned into lentiviral vector and in situ hybridization 

analysis for prolonged expression of HIF-1α. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 

 

Figure 10. Prolonged HIF-1α gene expression does not affect fetal or placental weight at 

E14.5 stage in development. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 

 

Figure 11. Prolonged HIF-1α gene expression inhibits placental cells from progressing 

past their progenitor states. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42 

 

Figure 12. Prolonged HIF-1α gene expression decreases branching morphogenesis. . . .45 

 

Figure 13. Prolonged HIF-1α gene expression decreases placental organization. . . . . . .47 

 

Figure 14. Prolonged HIF-1α gene expression prevents maternal artery remodeling. . . .50 

 

 

 

 

 



	
  viii 

LIST OF TABLES 

Table 1. Genes surveyed by in situ hybridization. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



	
  ix 

ACKNOWLEDGEMENTS 

There are many people that I would like to thank and acknowledge for making 

this work possible.  First, I would like to thank Dr. Thomas L. Brown for allowing me 

into his lab as an undergraduate student, and then allowing me to continue my graduate 

work here.  I know that taking on undergraduate students can be costly both in terms of 

time and finances, but I am glad Dr. Brown was willing to take that risk because it was 

the work in his lab that made me want to pursue a career in research.  I would also like to 

thank Dr. Brown for his guidance and support while working on this project.  I would 

also like to thank my committee members, Dr. Brown, Dr. Christopher Wyatt, and Dr. 

Courtney Sulentic, for their guidance throughout my project. 

I would like to thank the current and former members of the Brown lab for all 

their help, company, laughs, and great food during lab meetings: Chanel Keoni, Melissa 

Kaufman, Larissa Tangeman, Erica Baker, Savannah Doliboa, Rebecca Bricker, Cody 

Saylor, Deanne Jacobs, Elizabeth Ludvigson, Samantha Venkatesh, Kirsten Jacobson, 

Mary Mick, and all the other students that have helped with my project.  I would 

especially like to thank Melissa Kaufman and Larissa Tangeman.  Melissa has been so 

helpful in teaching me how to work with the animals.  She has been wonderful to work 

with and her ability to schedule and plan has been much appreciated.  I will always be 

grateful to Larissa who recruited me to the Brown lab when she was my teaching 

assistant. 

I would like to thank Natale Lab from University of Calgary in Canada for their 

work with the in situ hybridizations.  Dr. David Natale has been helpful in my 



	
  x 

understanding and interpreting the in situ hybridizations.  I would like to especially thank 

Byrony Natale and Martha Hughes of the Natale Lab for their work on the in situ 

hybridizations.  I would like to thank Dr. Gomez-Cambronero and Dr. Courtney Sulentic 

for use of their laboratory equipment.  I would like to thank the L.A.R. staff for all of 

their help when working on this project.  I would also like to thank the Wyatt Lab for 

being such wonderful lab neighbors. 

I would like to thank the Microbiology and Immunology Program for providing 

me with financial support in the form of a teaching assistantship.  I really enjoyed 

working with students, and this assistantship allowed me to realize the joy that comes 

from helping others to learn in the science field. I would also like to thank lecturer 

Meredith Rodgers and the other teaching assistants that I got the opportunity to work 

with. 

Finally, I would like to thank my family and friends for their love and support 

through this project.  I would especially like to thank anyone who listened to me 

excitedly explain my research to them even though they were not nearly as excited as I 

was.   

 



	
  1 

I. INTRODUCTION 
 

Placental importance 
 

The placenta is an essential transient organ that is formed during mammalian 

pregnancy. This highly organized organ allows for transport of nutrients and wastes 

between the mother and the developing fetus.  In order to maintain a healthy pregnancy, 

the placenta needs to remodel maternal arteries to facilitate blood flow.  Loss of the 

placental organization or ability to remodel maternal arteries leads to a reduction in 

placental function and disorders such as pre-eclampsia [1-5]. 

 

Pre-eclampsia 
 

 Pre-eclampsia is a pregnancy related disorder that occurs in 5-7% of all births in 

the United States and is a leading cause of maternal mortality in the world [2,6,7].  Some 

of the characteristics of pre-eclampsia include maternal hypertension and proteinuria 

during pregnancy, with these symptoms rapidly diminishing after delivery or termination 

of the pregnancy [2,6,7].  Pre-eclampsia also leads to premature delivery and low birth 

weight babies as well as the possibility of fetal death [2,6,7].  Placentas from pre-

eclamptic pregnancies exhibit a lack of maternal artery invasion [2,6,7].  In normal 

pregnancies, the maternal endothelial cells are replaced by invasive trophoblasts in a 

process known as remodeling [8,9].   The process of maternal artery remodeling is 

essential to establish appropriate blood flow and promote proper placental development 
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[4,9]. Due to the placental defects associated with pre-eclampsia, it is important to study 

placental development.  

 

Placental specific gene transfer 
 

The placenta is formed from a specific set of cells that arise during embryonic 

development.  The embryo progresses through may different stages of development after 

fertilization, from the two-cell stage to the blastocyst, before implantation.  At the 

blastocyst stage of embryonic development, it is clear that there are two cell types [10-

12]. The first cell type at the blastocyst stage, which gives rise to the fetus, is known as 

the inner cell mass (ICM) [10-12]. The second cell type that is apparent at the blastocyst 

stage is the trophectoderm, and it develops into the placenta [10-12].  The trophectoderm 

at the blastocyst stage consists of a single cell layer that surrounds the inner cell mass 

(Figure 1).  In order to obtain stable, placental-specific, expression of a gene, the pre-

implantation blastocyst can be infected with lentivirus containing the gene of interest [11-

13].  The blastocysts, with only its trophectoderm infected, can then be transferred into a 

pseudo-pregnant female (foster mom) to facilitate the implantation of the embryo. 

Blastocyst infection and then transfer into the pseudo-pregnant female allows for 

infection of only the placenta but neither the mother nor the fetus, which is essential for 

placental specific gene studies. 

 

Placental organization 
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Figure 4. Blastocyst organization.  

The blastocyst consists of two cell types: the inner cell mass and trophectoderm.  The 

inner cell mass gives rise to the developing fetus (red).  The trophectoderm is a single cell 

layer forming the outside of the blastocysts that gives rise to the placenta (blue). 
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Figure 1. 
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The rodent placenta has analogous structure and function to the human placenta, 

and has been used as a model system for human placental development [12,14,15].  The 

rodent placenta consists of three cell lineages: the labrynthine, spongiotrophoblast, and 

giant cell layers (Figure 2).  The labrynthine layer is closest to the fetus and is important 

in transport of nutrients and wastes between the mother and developing fetus [14].  One 

of the markers used to identify the labrynthine cell lineage is Glial cell missing 1 (Gcm-1) 

[16,17].  The spongiotrophoblast layer lies between the labrynthine and giant cell layers.  

The spongiotrophoblast layer regulates exchange between the mother and fetus and acts 

as a stem cell layer for the giant cells [12].  The marker used for the spongiotrophoblasts 

layer is trophoblast specific protein alpha (Tpbpa/4311) [8].  The giant cell layer, which 

is closest to the mother, is responsible for invasion and remodeling maternal arteries 

during implantation [12].  The giant cell layer is identified by placental lactogen II (Pl2), 

which identifies all non-invasive giant cells throughout placental development [18].  The 

giant cell layer also has a cell subset, marked by proliferin (Plf), which is responsible for 

invasion and remodeling of maternal arteries [18].  Other cells that are important to study 

in order to understand placental organization include progenitors cells and glycogen cells.  

Progenitor cells are marked by a transcription factor known as Mash2 (mammalian 

achaete-scute homologous protein-2) [19,20].  Progenitor cell distribution is a helpful 

indicator of the placenta’s developmental state since the overexpression of progenitor 

cells indicates an underdeveloped or immature placenta [19,20]. Glycogen cells are 

important for energy storage in the placenta and are positioned between the giant cell and 

spongiotrophoblasts cell lineages [21,22].   
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Figure 5. Organization of the rodent placenta. 

 The rodent placenta is organized into three cell lineages: giant cells, spongiotrophoblasts, 

and labrynthine cells.  Each cell type exhibits lineage-specific markers as indicated. 

Figure modified from formerly published data [23].	
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Figure 2. 
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Placental oxygen and development 
	
  

Differing oxygen levels in the placenta have been implicated in playing an 

important role in placental development.  In the placenta, there is an oxygen gradient in 

which conditions are very low, near 2% oxygen, during the early stages of development 

and oxygen levels are near 12% at the maternal arteries [3,24].  During the early stages of 

placental development when oxygen levels are low, trophoblast cell differentiation is 

inhibited [25-29].  When trophoblast cells are exposed to higher oxygen concentrations 

(10-20%), placental differentiation occurs [24,26].  One gene shown to be important in 

placental cell differentiation is hypoxia-inducible factor 1 alpha (HIF-1α) [4,27,30,31]. 

 

Hypoxia inducible factor 1 alpha (HIF-1α) 
	
  

HIF-1α is an oxygen-sensing gene in which protein levels are high when oxygen 

levels are low [32-35].  HIF-1α protein expression is dependent on oxygen levels because 

it has three sites that become hydroxylated in the presence of oxygen, causing it to be 

inactive and signaling it toward proteasomal degradation [33,36,37].  The two proline 

residues on HIF-1α are hydroxylated by prolyl hydroxylase domain proteins (PHD) and 

the asparagine residue is hydroxylated by an asparaginyl hydroxylase known as factor 

inhibiting HIF-1α (FIH) in the presence of oxygen [36,37].  Once hydroxylated by PHD, 

the von Hippel-Lindau region of an E3 ligase recognizes HIF-1α and causes its 

ubiquination, targeting HIF-1α toward proteasomal degradation [33,37] (Figure 3A).  In 

conditions with low oxygen, HIF-1α protein levels increase and HIF-1α translocates into 

the nucleus, which allows for dimerization with the constitutively active HIF-1β subunit, 



	
  9 

Figure 6. HIF-1 activation and inactivation. 

 (A) Schematic of how HIF-1α is degraded in the presence of oxygen. (B) Schematic 

showing how HIF-1α is active in low oxygen conditions and causes gene transcription.  
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A 

Figure 3. 
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also known as aryl hydrocarbon receptor nuclear translocator (ARNT) [37,38].  The 

newly formed heterodimeric protein acts as a transcription factor, regulating genes 

associated with cell survival, such as placental growth factor (PlGF), and angiogenesis, 

such as vascular endothelial growth factor (VEGF) [27,33,34,39] (Figure 3B).  Former 

studies have shown that low levels of HIF-1α promote cell differentiation and high levels 

of HIF-1α promote cell proliferation [27,33,40,41].  In order to create an oxygen 

insensitive form of HIF-1α that would always promote cell proliferation, the three 

hydroxylation sites of the protein could be mutated to prevent the hydroxylation [37].  

This would allow the concentration of HIF-1α to build and cause gene transcription even 

in the presence of oxygen, in this stud the oxygen insensitive form of HIF-1α is denoted 

as CA-HIF-1α (Figure 4).  

 

HIF-1α related gene knock-out 
	
  

Both knock-out models and human placental studies highlight the importance of 

HIF-1α during embryonic and placental development. Both HIF-1α and HIF-1β (ARNT) 

knock-outs have proven to be embryo-lethal [28,42-44].   Knocking-out the von Hippel- 

Lindau (VHL) gene, which is important in recognizing the hydroxylated HIF-1α to signal 

it toward proteasomal degradation, leads to embryonic lethality due to defective placental 

vascularization [45].  Knock-outs of PHD-2, the primary form of PHD responsible for 

hydroxylation of HIF-1α, have also proven to be embryonic lethal [46].  Another gene 

knock-out study of interest is the study of catechol-O-methlytransferase (COMT), an 

enzyme involved in metabolism of 2-methoxyestradiol (2-ME), which is known to 
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Figure 4. Oxygen insensitive form of HIF-1α, CA- HIF-1α, is always active. 

 (A) Schematic of how CA-HIF-1α is able to be active even in the presence of oxygen. 
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Figure 4. 
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suppress HIF-1α in vivo [47].  COMT knock-out mice, which have low 2-ME levels and 

therefore high levels of HIF-1α, exhibit characteristics similar to pre-eclamptic women 

[47].  Human placental studies also support the importance of HIF-1α regulation for 

embryonic and placental development.  Placentas analyzed from pre-eclamptic human 

pregnancies have shown an increase in HIF-1α protein expression [30,31].  Therefore, 

regulation of HIF-1α is important during embryonic development either in the embryo, in 

the placenta, or both; therefore, a lack of its regulation could lead to pregnancy-

associated disorders.   

 

Summary 
 

Correct placental formation is essential for mammalian pregnancy.  Oxygen levels 

in the placenta have proven to be key in regulation of placental development.  

Specifically, HIF-1α has been proven to be an important regulator of trophoblast 

differentiation and proliferation and looks to be important in placental development. In 

this study, we prolonged the mRNA expression of placental HIF-1α, by using a form 

HIF-1α, denoted as CA-HIF-1α, that is insensitive to oxygen, in order to determine its 

importance in embryonic and placental development.  Placental-specific, prolonged 

mRNA expression of HIF-1α was achieved by lentiviral infection of embryos at the 

blastocyst stage of development, allowing for stable gene expression in the placenta 

without infection of the mother or fetus.  Placental sections were analyzed via in situ 

hybridization to analyze placental organization and development. Our results show that 

placental-specific, prolonged HIF-1α expression leads to abnormal placental 
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development, suggesting that regulation by HIF-1α plays a critical role in placental 

formation.  Therefore, deregulation of HIF-1α could lead to pregnancy associated 

disorders or early termination. 
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II. MATERIALS AND METHODS 

Materials 
 

 The plasmid construct pc3-HIF-1α3XSDM was generously provided by Dr. 

Christina Warnecke of Universität Erlangen-Nürnberg, Germany [26].  Restriction 

enzymes and buffers used for ligation experiments were purchased from Invitrogen 

(Carlsbad, CA). The 293FT cell line and Virapower packaging mix was purchased from 

Invitrogen Corp (Carlsbad, CA).  Metafectene transfection reagent was obtained from 

Biontex (Planegg, Germany) The 5X PEG-it virus precipitation solution was purchased 

from System Biosciences (Mountain View, CA). HIV-1 p24 Antigen ELISA 2.0 kit used 

for viral titering was obtained from ZeptoMetrix Corporation (Buffalo, NY).  C57Bl/6 

male and female mice, ICR female mice, and vasectomized ICR male mice were 

purchased from Harlan Laboratories (Indianapolis, IN) or Taconic Farms Inc. 

(Germantown, NY). Pregnant Mare’s Serum gonadotropin (PMS), Human Chorionic 

Gonadotropin (HCG), and mineral oil were acquired from SIGMA-Aldrich Co. (St. 

Louis, MO). EmbryoMax M2 Media and EmbryoMax KSOM embryo culture media 

were obtained from Millipore (Billerica, MA.) The Non-Surgical Embryo Transfer 

Device (NSET) was purchased from ParaTechs Corporation (Lexington, KY). 

Vectashield mounting media was obtained from Vecotor laboratories (Burlingame, CA). 

 

Cloning and Cell Culture 
 

In order to create the lentiviral construct (pLv) containing the HIF-1α3XSDM 

gene (oxygen insensitive form of HIF-1α) under the constitutive Cytomegalovirus 
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(CMV) promoter; the pc3-HIF-1α3XSDM construct and pLB2V5 (a construct generated 

by replacing the Green Fluorescent Protein (GFP) gene of pLv-CMV-GFP-V5 with a 

multiple cloning site) were digested using BamHI and ApaI restriction enzymes. DNA 

fragments for ligation were isolated and the HIF-1α3XSDM gene was then ligated into 

the pLB2V5 using the compatible BamHI and ApaI ends and T4 DNA ligase to generate 

pLB2V5-CA-HIF-1α.  The ligation constructs were transformed into One Shot Stbl3 

Chemically Competent Cells (Invitrogen, Carlsbad, CA).  Transformed constructs were 

selected by ampicillin resistance (50µg/mL). DNA was isolated from bacterial cells and 

the construct was confirmed by differential restriction digestion and sequencing 

(Cleveland Genomics, Cleveland, OH).  

293FT cells were cultured in DMEM/High glucose (Thermo Scientific, Waltham, 

MA), 10% heat-inactivated fetal bovine serum (Biowest, Kansas City, MO), 1% 

antibiotic-antimycotic (Thermo Scientific, Waltham, MA), 1 mM sodium pyruvate 

(Mediatech, Inc., Manassas, VA), 2 mM glutaGRO Supplement (Mediatech, Inc., 

Manassas, VA), 0.1 mM NEAA Mixture (Lonza, Walkersville, MD) and 500 µg/mL 

G418 (InvivoGen, San Diego, CA).  Cos7 cells were cultured in DMEM/High glucose 

(Thermo Scientific, Waltham, MA), 10% heat inactivated fetal bovine serum (Biowest, 

Kansas City, MO), and 1% antibiotic-antimycotic (Thermo Scientific, Waltham, MA).  

Rcho-1 cells were cultured as previously described [26,48]. All cell types were passaged 

at 80-90% confluence. 

 

Western blotting (Kashmira Kulkarni unpublished methods) 
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Nuclear extracts for analysis of HIF-1a were completed by using CellLytic 

NuCLEAR Extraction Kit following the manufacturer’s specifications.  Cells were 

scraped and collected in chilled 1xPBS and followed by lysis via use of a hypotonic lysis 

solution.  Nuclear extracts were isolated by treatment with specified solutions and 

differential centrifugation.  Proteins were used for Western blot analysis or stored at -

80oC until further use. Bradford method was used to determine nuclear extract 

concentration and samples were analyzed spectrophotometrically at 595nm [49].  The 

concentration of protein in each sample was determined using a Bovine serum albumin 

standard protein curve.  Nuclear extracts (12.5-50 µg protein) were reduced using 1x 

reducing sample buffer (62.5 µM Tris pH 6.8, 2% SDS, 12.5% glycerol, 2.5% Beta- 

mercaptoethanol and 0.1% of 2.5% bromophenol blue in ethanol [50].  Samples were 

boiled at 95oC for 10 minutes and separated on 8%-10% SDS-polyacrylamide gel.  

Precision plus protein standard dual colored markers were used to determine the 

molecular weights (BioRad, Berkeley, California). Proteins separated by SDS-PAGE 

electrophoresis were transferred to PVDF (polyvinylidene fluoride) membrane in transfer 

buffer (25mM Tris pH 8.0, 192 mM glycine and 20% methanol overnight at 100mA 

constant current [26,51]. Ponceau S staining was used to confirm protein transfer.  The 

membrane was incubated with blocking buffer (5% Non- fat milk, 60 mM Tris base, 204 

mM NaCl, 0.025% Tween 20, pH 7.4) for 1hr at room temperature on a rocker.  

Subsequently, the blot was incubated with primary antibody at 4oC overnight or 1hr at 

room temperature on a rocker.  The membrane was washed three times with 1x PBS 

containing 0.05% Tween 20, and was incubated with secondary antibody for 1hr while 

rocking.  After 1hr incubation, the membrane was washed three times with 0.05% Tween 
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20 in 1XPBS [26,51].  Specific protein was identified with ECL chemiluminiscence 

reagent (Amersham).   

 

Luciferase assay (Kashmira Kulkarni unpulblished methods) 
 

To determine Hypoxia Response Element (HRE) reporter activity, cos7 cells were 

transiently transfected with 0.2 µg pRL-SV40-promoter constitutive reporter plasmid, 

1µg PGK1-HRE luciferase reporter plasmid, 1µg of plasmid (either pLB2V5, pLB2V5-

CA-HIF-1α, or pc3-HIF-1α3XSDM) and 5µl Metafectene reagent.  Media was changed 

18hrs post transfection. Twenty-four hours post media change, luciferase reporter activity 

was determined by using the Dual Luciferase Assay system (Promega) according to the 

manufacturer’s protocol.  Results show the fold-increase in HRE activity in samples 

cultured at ambient oxygen.  

 

Lentiviral production 
 

 293FT cells were transfected with 9 µg of the plasmid containing the gene of 

interest, either pLB2V5-CA-HIF-1α or pLv-CMV-GFP-V5, and optimized Virapower 

packaging mix, including 4.6 µg pLP1, 1.8 µg pLP2, and 2.52 µg pLp-VSVG, 

(Invitrogen, Carlsbad CA) using 50 µl Metafectene transfection reagent (Biontex, 

Planegg, Germany).  Media was changed at 24hrs post transfection and virus was 

collected at 72hrs after media change.  Virus containing media was centrifuged for 20 

minutes at 3,000rpm.  The supernatant was stored at –80oC and later used for infection. 



	
  20 

Lentiviral concentration and titering 
 

 Viral supernatant was mixed with 5X PEG-it virus precipitation solution (System 

Biosciences, Mountain View, CA) and incubated overnight at 4oC.  The mix was then 

centrifuged at 3,000 rpm for 30 min at room temperature.  The supernatant was discarded 

and pellet was obtained. The pellet was re-suspended in 1XPBS and Polybrene 

(Millipore, Billerica, MA) at a final concentration of 10 µg/ml.  The re-suspended pellet 

was used for infections of blastocysts. Titering for viral concentrations was completed 

with concentrated virus following manufacturer’s specifications using HIV-1 p24 

Antigen ELISA 2.0 (ZeptoMetrix Corporation, Buffalo, NY).  Briefly, samples and 

standards were prepared and added to pre-washed microplate.  The microplate was 

covered and incubated for 3 to 24 hours at 37 oC and then washed before adding HIV-1 

Detector Antibody. The microplate was covered and was incubated at 37 oC for 1 hour.  

The microplate was washed, substrate was added, and incubated at room temperature for 

30 min.  The reaction was stopped by adding Stop Solution and plate was read within 15 

min at 450 nm on a plate reader. For infection, LB2V5-CA-HIF-1α or Lv-CMV-GFP-V5 

lentivirus was concentrated to a final infective concentration of 6,800 ng/ml or 1,200 

ng/mL, respectively. 

  

Blastocyst Isolation and Culture 
 

Four to five week old (14-16 gram) C57Bl/6 female mice were super-ovulated by 

injection of 5 International Units (IU) PMSg, Pregnant Mare’s Serum gonadotropin 

(SIGMA-Aldrich, St. Louis, MO), and 47 hours later injected with 5IU HCG, Human 
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chorionic gonadotropin (SIGMA-Aldrich, St. Louis, MO).  Females were allowed to 

mate with male C57Bl/6 mice immediately after HCG injection and plug checked at 0.5 

days post copulation (d.p.c.). At 1.5 d.p.c., super-ovulated females were CO2 euthanized 

and the oviducts were removed for 2-cell collection. The oviducts were shredded in 

EmbryoMax M2 Media with phenol red for collection (Millipore, Billerica, MA).  

Microdrop cultures were setup 18-24 hours before use by covering 20 µl drops of 

EmbryoMax KSOM embryo culture media (Millipore, Billerica, MA) with mineral oil 

(SIGMA-Aldrich, St. Louis, MO) in a 35 mm cell culture dish and incubated at 37.5oC at 

5.5% CO2. Isolated embryos were placed in Microdrop culture of EmbryoMax KCL 

Simplex Optimization Medium (KSOM) and incubated at 37.5oC and 5.5% CO2 until 

further use.  

 

Blastocysts infection 
 

 Concentrated virus that was re-suspended in 1XPBS and Polybrene mixture was 

placed in a 35 mm plate and covered with approximately 2 ml of mineral oil to create 

virus microdrop culture. Virus microdrop culture was allowed to incubate for 30 minutes 

at 37.5oC and 5.5% CO2 prior to treatment of blastocysts.  Blastocysts at day E3.5 were 

treated with acidic Tyrode’s solution (SIGMA, St. Louis, MO), to remove the zona 

pellucida, the protective protein coat that surrounds the embryo and prevents viral 

infection.  Blastocysts were subsequently washed three to four times in EmbryoMax M2 

medium, and transferred into virus microdrop cultures and incubated for 4 to 6 hours at 

37.5oC and 5.5% CO2.  Post infection, blastocysts were washed in EmbryoMax M2 
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embryo culture media to remove virus.  Embryos were combined into one drop of 

EmbryoMax M2 medium and were used for embryo transfer. 

 

Embryo transfer 
 

 Eight to ten week old Imprinting Control Region (ICR) mice (23-33 grams), were 

allowed to mate with vasectomized ICR males overnight to produce pseudo-pregnant 

females. Females were plug checked at 0.5 d.p.c., and females positive for copulation 

were used for embryo transfer. Post-lentiviral infection blastocysts were washed in 

EmbryoMax M2 medium and 10-20 embryos were transferred into a 2.5 d.p.c. pseudo-

pregnant ICR mouse via an NSET Device, Non-Surgical Embryo Transfer Device 

(ParaTechs Corporation, Lexington, KY). 

 

Immunocytochemistry (Kashmira Kulkarni unpulblished methods) 
 

 Placenta and embryo sections were hydrated with 3 washes in 1xPBS for 5 

minutes each. Hydration was followed by permeabilization treatment with TritonX-100 

(0.2% TX-100 in 1xPBS).  Permeabilization was followed by quenching with glycine 

(1% in 1xPBS).  Sodium borohydrate (NaBH4 0.1% in 1xPBS) treatment for was used to 

quench autoflourescence.  The tissues were then blocked in blocking solution (Goat 

serum 10%, tween 0.05% in 1xPBS) for 1hr at room temperature.  Primary antibody (V5-

topo at 1:500) was applied overnight in 1% blocking solution at 4oC overnight in a 

humidified chamber.  The following day sections were washed with 1xPBS and 
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secondary antibody (Alexa Fluor 594 Goat anti rabbit, at 1:1000) was applied in 1% 

blocking solution for 1hr at room temperature in a dark box. Sections were washed with 

1xPBS and treated with Hoeschst stain (1ug/ml) for 5 minutes at room temperature 

followed by 3 washes with PBS.  Using Vectashield mounting media, glass cover slips 

were mounted on the plate surface, and staining was observed by fluorescence 

microscopy. 

 

Probes 
 

Digoxigenin (DIG)-labeled riboprobes were prepared according to the 

manufacturers protocol (Roche) (Figure 5). Riboprobes for Pcdh12, Tpbpa, Gcm1, 

Prl3b1/Pl2, Prl2c2/Plf, and Ascl2/Mash2 have been previously described (Table 1) 

[16,17, 19,52-56]. Riboprobes for Pecam-1 were generated from a plasmid that was 

created in the lab.  Briefly, PCR was used to amplify an 811 base pair region 

corresponding to nucleotides 1784 to 2595 of the Pecam-1 messenger RNA sequence 

(NM008816).  This fragment was subsequently cloned into pGEM-Teasy (Promega).  For 

detection of Hif1a, riboprobe template was amplified by RT-PCR utilizing forward and 

reverse primers incorporating T3 and T7 RNA polymerase recognition sites, respectively.  

The primer sequences were: Forward/T3, 5’-

AATTAACCCTCACTAAAGGGCAGTCGACACAGCCTCGATA,  

Reverse/T7, 5’-TAATACGACTCACTATAGGGTTTGGAGTTTCCGATGAAGG and 

amplify an amplicon of approximately 670 bp. 
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Tissue preparation and in situ hybridization 
 

Conceptuses for in situ hybridization were dissected at E14.5 in cold 1xPBS after CO2 

asphyxiation, fixed overnight in 4% paraformaldehyde (PFA) in 1XPBS at 4°C, 

embedded in paraffin and sectioned (7 µm) as previously described [53,57]. For in situ 

hybridization, sections underwent de-paraffinization in xylene followed by rehydration 

through a graded ethanol series ending in PBS.  Sections were then post-fixed in 4% 

PFA, treated with proteinase K to degrade protein and reduce background (15 mg/ml for 

5 minutes at room temperature). Then, sections were acetylated for 10 minutes (acetic 

anhydride, 0.25%; Sigma) and hybridized with DIG-labeled probes overnight at 65oC.  

Hybridization buffer contained 1X salts (200mM NaCl, 13 mM Tris, 5 mM sodium 

phosphate monobasic, 5 mM sodium phosphate dibasic, 5 mM EDTA), 50% formamide, 

10% (w/v) dextran sulfate, 1 mg/ml yeast tRNA (Sigma), 1X Denhardt’s [1% (w/v) 

bovine serum albumin, 1% (w/v) Ficoll, 1% (w/v) polyvinylpyrolidine) and cRNA probe 

(final dilution of 1:2000 from reaction with 1 mg template DNA).  Post-hybridization 

washes were followed by an RNase treatment [400 mM NaCl, 10mM Tris (pH 7.5), 5 

mM EDTA, 20 mg/ml RNase A].  After blocking with blocking solution (hybridization 

buffer lacking cRNA probe), sections were incubated overnight at 4oC in alkaline 

phosphatase-conjugated, anti-DIG antibody (Sigma) diluted 1:2500 in blocking solution.  

Sections were washed and signals were detected using alkaline phosphatase 

immunohistochemistry with nitro-blue tetrazolium chloride and 5-bromo-4-chloro-3'-

indolyphosphate p-toluidine salt (NBT/BCIP) as the substrate as previously described 

[53,58]. Sections were counterstained with nuclear fast red. 
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Figure 5. Diagram of a riboprobe. 

 Schematic of how in situ hybridization works via use of a DIG-labeled riboprobe. 
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Figure 5. 
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Table 1. Genes surveyed by in situ hybridization. 

 

 

 

 

 

 

 

 

 

 

Marker Name  
Marker 

Abbreviation Cell Type Marked 
Marker 
Citation 

Hypoxia inducible 
factor 1 alpha HIF-1α N/A Current Study 
Mammalian achaete-
scute homologous 
protein-2   Mash2 Progenitor cells [19] 
Glial cell marker-1 Gcm-1 Labyrinthine progenitors [16] 
Trophoblast specific 
protein alpha Tbpba Spongiotrophoblasts [52] 
Protocadherin-12 Pcdh12 Glycogen cells [53] 
Placental lactogen II Pl2 Non-invasive giant cells [53] 
Platelet/endothelial 
cell adhesion 
molecule-1 Pecam-1 Maternal endothelial cells 

Natale 
(unpublished 

data) 
Proliferin Plf Invasive giant cells [54] 
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Animal use 
	
  

All animal procedures were performed in accordance with the Wright State University 

Laboratory Animal Care and Use Committee (LACUC). 
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III. RESULTS 
 

Placental specific expression 
	
  

 Previous studies have shown the ability to obtain placental specific gene 

expression via infection at the blastocyst stage, embryonic day 3.5 (E3.5) [11,13].  

Infection at the blastocyst stage allows for placental-specific gene transfer because the 

embryo consists of two cell types, the ICM, which gives rise to the fetus and the 

trophectoderm, the single-cell outer layer which gives rise to the placenta [10-13].  

Lentiviral infection and then embryo transfer at this stage allows for gene expression in 

the placenta without the mother or fetus expressing the gene of interest [11,13]. 

Following this method, we infected blastocysts with Lv-CMV-GFP-V5 virus, which used 

GFP as a reporter gene.  We confirmed lentiviral infection of the blastocyst via 

fluorescent microscopy to detect GFP expression (Figure 6).  In order to confirm that the 

infection was placental specific, fetoplacental units were collected at E10.5 and were 

visualized for GFP expression via fluorescent microscopy.  Only the placenta (P) showed 

GFP expression, but the decidua (D), maternal tissue, of the mother and the embryo (E) 

lacked GFP expression   (Kashmira Kulkarni, unpublished data, Figure 7). Placental 

transduction by Lv-CMV-GFP-V5 was confirmed by expression of both GFP and V5 

epitope tag since the V5 epitope is located at the end of the GFP reading frame and is 

followed by a stop codon (Kashmira Kulkarni, unpublished data, Figure 8A).  While GFP 

expression was observed by fluorescent microscopy (Figure 8C), V5 epitope expression 

(red) was observed throughout the GFP expressing placenta by immunocytochemical 

analysis (Figure 8D) and co-localization of the GFP expression and V5 staining was  
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Figure 6. Trophoblast specific GFP expression after infection with Lv-CMV-GFP-

V5 at the blastocyst stage. 

Mouse blastocyst (E3.5) devoid of zona pellucida was infected with concentrated Lv-

CMV-GFP-V5 virus for 4-6 hours at 37.5oC and 5.5% CO2.  (A) The bright field image 

of a post infection.   (B) GFP expression was assessed post infection via fluorescent 

microscopy.    
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Figure 6. 
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Figure 7. Analysis for placental specific expression of the GFP at E10.5 after 

infection with Lv-CMV-GFP-V5 at the blastocyst (E3.5) stage of development. 

Mouse blastocyst (E3.5) devoid of zona pellucida was infected with concentrated Lv-

CMV-GFP-V5 and transferred into pseudo-pregnant mother.  Feto-placental unit was 

collected at E10.5 and was fixed in 4% paraformaldehyde and embedded in O.C.T.  Eight 

micron sections were examined for GFP expression via fluorescent microscopy. E 

indicates the embryo, P indicates the placenta, and D indicates the maternal decidua. (A) 

Bright field image of the feto-placental unit, (B) fluorescent image to analyze GFP 

expression, (C) overlay of bright field and fluorescent images from A and B.  
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Figure 7. 
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Figure 8. Immunohistochemical analysis of V5 epitope tag expression in placenta 

infected with Lv-CMV-GFP-V5 virus. 

Placentas were obtained on embryonic day 12.5 (E12.5) from blastocysts infected with 

concentrated Lv-CMV-GFP-V5.  Tissues were fixed in paraformaldehyde and embedded 

in O.C.T. Eight micron sections were examined for V5 epitope tag expression by 

immunocytochemistry analysis. (A) Diagram of Lv-CMV-GFP-V5 construct depicting 

position of V5 epitope tag. (B) Bright field image of placenta. (C) Fluorescent 

microscopy image of GFP expression. (D) Alexa Fluor 594 secondary antibodies were 

used to probe for polyclonal antibodies specific to V5 epitope (red). (E) Overlay of 

images C and D, where yellow color identifies overlap of GFP expression (green) and V5 

staining (red). (F) Hoechst staining (blue) was performed for nuclear staining on GFP 

sections stained with anti-V5 epitope tag. 
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Figure 8. 
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observed in the pLv-CMV-GFP-V5 infected placenta (Figure 8E).  Additionally, Hoechst 

staining was performed for the visualization of nuclei (Figure 8F). 

 

HIF-1α prolonged expression 
	
  

 In order to cause prolonged expression of HIF-1α, we generated a lentiviral-based 

plasmid, denoted as pLB2V5-CA-HIF-1α, encoding HIF-1α protein that is no longer 

oxygen sensitive due to mutations of amino acids that prevent its hydroxylation and 

signaling toward proteasomal degradation (Figure 9A)  [37].  Western blot analysis was 

performed on Rcho-1 cells transiently transfected with pLv-CMV-GFP-V5, pLB2V5-

CA-HIF-1α, or pc3-HIF-1alpha3XSDM (positive control). Western analysis confirmed 

increased HIF-1α protein expression by newly formed pLB2V5-CA-HIF-1α construct 

under ambient oxygen (Figure 9B).  To test the ability to bind the hypoxia response 

element (HRE) that allows for transcriptional activation, the newly formed pLB2V5-CA-

HIF-1α and the base plasmids of pLB2V5 (lentiviral backbone) and pc3-HIF-

1alpha3XSDM (plasmid containing oxygen independent HIF-1α) were transiently 

transfected into Cos7 cells.  The pLB2V5-CA-HIF-1α and base plasmid pc3-HIF-

1alpha3XSDM resulted in activation of the phosphoglycerate kinase-hypoxia responsive 

element- luciferase reporter (PGK-HRE-luciferase), indicating that CA-HIF-1α was able 

to bind the hypoxia response element under ambient oxygen conditions (Figure 9C).    

Prolonged expression of CA-HIF-1α in vivo was verified via in situ hybridization 

using a HIF-1α riboprobe.  Blastocysts, devoid of zona pellucida, infected with either Lv-

CMV-GFP-V5 or LB2V5-CA-HIF-1α and transferred into pseudo-pregnant mothers and  
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Figure 9. HIF-1α3XSDM gene was cloned into lentiviral vector and in situ 

hybridization analysis for prolonged expression of HIF-1α. 

HIF-1alpha3XSDM gene was excised from pc3-HIF-1α3XSDM plasmid and ligated into 

pLB2V5 plasmid using BamHI and ApaI restriction enzymes. (A) Diagram of newly 

formed pLB2V5-CA-HIF-1α plasmid construct, which was confirmed by sequencing. 

Rcho-1 cell were transiently transfected with pLv-CMV-GFP-V5, pLB2V5-CA-HIF-1α, 

or pc3-HIF-1alpha3XSDM and Western blot analysis was completed to confirm 

expression of HIF-1α protein at ambient oxygen (B).  Cos7 cells were transiently 

transfected with pLB2V5, pLB2V5-CA-HIF-1α, or pc3-HIF-1alpha3XSDM and HIF-

1alpha expression was analyzed under ambient oxygen conditions and PGK-1-HRE 

reporter activity was determined using Luciferase reporter assay (C). (D) Placentas from 

either LB2V5-CA-HIF-1α (right panel) or Lv-CMV-GFP-V5 control (left panel) infected 

blastocysts were collected at embryonic day 14.5 (E14.5) and fixed in paraformaldehyde 

and embedded in paraffin.  Placental sections were hybridized with DIG-labeled 

riboprobes specific for HIF-1α, denoted by purple staining.  DIG-expression was 

analyzed using alkaline phosphatase immunohistochemistry.  Sections were 

counterstained with nuclear fast red.  
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fetuses and placentas were collected at E14.5 for analysis.  Placentas infected with 

LB2V5-CA-HIF-1α (Figure 4B, right) showed much greater HIF-1α expression than 

those infected with Lv-CMV-GFP-V5 control virus (Figure 9D, left), proving that 

infection with LB2V5-CA-HIF-1α does prolong the expression of HIF-1α. 

 To test the functionality of placentas that have prolonged expression of HIF-1α, 

placental and fetal weights were measured at E14.5 and the placental tissue was analyzed.   

When comparing both placental and fetal weights of pregnancies from blastocysts 

infected with control Lv-CMV-GFP-V5 virus or LB2V5-CA-HIF-1α, there is no 

significant difference in the placental or fetal weights at E14.5 (Figure 10).  However, 

placental analysis via in situ hybridization exhibited a drastic change in placental 

morphology. 

 

Inhibition of differentiation 
	
  

Prolonged expression of HIF-1α showed a tendency for cells to remain in progenitor 

states.  Progenitor cell distribution was analyzed by in situ hybridization of Mash 2 

(Figure 11).  Mash 2 expression is greatly increased in placentas exhibiting prolonged 

HIF-1α (Figure 11, right) compared to control placentas expressing GFP (Figure 11, left).  

This evidence shows that prolonged placental HIF-1α is inhibiting trophoblasts from 

progressing past progenitor cells states.  Specific glycogen cell distribution was analyzed 

via Pcdh12 (Figure 1).  Generally, the prolonged expression HIF-1α placentas (Figure 11, 

right) showed less organization of glycogen cells when compared to control placentas,  
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Figure 10. Prolonged HIF-1α gene expression does not affect fetal or placental 

weight at E14.5 stage in development. 

Mouse blastocyst (E3.5) was infected with concentrated pLv-CMV-GFP-V5 or pLB2V5-

CA-HIF-1α and transferred into pseudo-pregnant mother. Placentas and fetuses from 

either pLB2V5-CA-HIF-1α (n= 11 fetuses and placentas) or pLv-CMV-GFP-V5 (n= 7 

fetuses and placentas) infected blastocysts were collected at embryonic day 14.5 (E14.5) 

and weighed immediately after dissection. 
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Figure 10. 
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Figure 11. Prolonged HIF-1α gene expression inhibits placental cells from 

progressing past their progenitor states. 

Placentas and fetuses from either LB2V5-CA-HIF-1α (right) or Lv-CMV-GFP-V5 (left) 

infected blastocysts were collected at embryonic day 14.5 (E14.5) and fixed in 

paraformaldehyde and embedded in paraffin.  Placental sections were hybridized with 

DIG-labeled riboprobes specific for Mash 2 (progenitor cell marker) or Pcdh12 

(glycogen cell marker), denoted by purple staining.  DIG-expression was analyzed using 

alkaline phosphatase immunohistochemistry.  Sections were counterstained with nuclear 

fast red. Brackets indicate areas with organized glycogen cells. 
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Figure 11. 
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which had organized glycogen cells (indicated by brackets) (Figure 11, left). These data 

indicate a lack of timely and proper differentiation as well as placental disorganization.   

Decrease in branching morphogenesis 
	
  

 Analysis of the labrynthine layer was determined by in situ hybridization for 

Gcm-1 (Figure 12).  Upon viewing a gross section of the placentas, Gcm-1 expression in 

the HIF-1α placentas is less prevalent and more disorganized than in control placentas 

(Figure 12).  Upon further investigation at higher magnification, punctate expression 

(indicated by arrows) of Gcm-1 was observed in the labrynthine layer of HIF-1α 

placentas, where as a normal banding and distributed expression of Gcm-1 (indicated by 

brackets) was seen in the control placentas shown by brackets (Figure 12, bottom). 

Disorganization and limited, punctate expression of Gcm-1 is indicative of a lack of 

branching morphogenesis, as shown by arrows (Figure 12, bottom). 

 

Placental disorganization  
	
  

To analyze the organization of the spongiotrophoblasts, in situ hybridization for Tpbpa 

was assessed.   In CA-HIF-1α placentas, the spongiotrophoblast layer is compact and 

cells in this layer have much less Tpbpa expression in comparison to control placentas 

(Figure 13).  These data suggest disorganization of the placenta as a whole and decrease 

in trophoblast stem cells.   

Since the spongiotrophoblast layer suggests placental disorganization, the giant cell layer 

was also analyzed via in situ hybridization for Pl2 (Figure 13).  The number of giant cells  
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Figure 12. Prolonged HIF-1α gene expression decreases branching morphogenesis. 

Placentas and fetuses from either LB2V5-CA-HIF-1α (right) or Lv-CMV-GFP-V5 (left) 

infected blastocysts were collected at embryonic day 14.5 (E14.5) and fixed in 

paraformaldehyde and embedded in paraffin.  Placental sections were hybridized with 

DIG-labeled riboprobes specific for Gcm-1 (lineage specific labyrinthine cell marker for 

branching morphogenesis), denoted by purple staining.  DIG-expression was analyzed 

using alkaline phosphatase immunohistochemistry.  Sections were counterstained with 

nuclear fast red. (Top) Gcm-1 at 4X magnification. (Bottom) Gcm-1 at 20X 

magnification with brackets indicating banding, distributed expression and arrows 

indicating punctate expression. 
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Figure 12. 
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Figure 13. Prolonged HIF-1α gene expression decreases placental organization. 

Placentas and fetuses from either LB2V5-CA-HIF-1α (right) or Lv-CMV-GFP-V5 (left) 

infected blastocysts were collected at embryonic day 14.5 (E14.5) and fixed in 

paraformaldehyde and embedded in paraffin.  Placental sections were hybridized with 

DIG-labeled riboprobes specific for Tpbpa (lineage specific spongiotrophoblasts cell 

marker) or Pl2 (lineage specific giant cell marker), denoted by purple staining.  DIG-

expression was analyzed using alkaline phosphatase immunohistochemistry.  Sections 

were counterstained with nuclear fast red. 
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Figure 13. 
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in the HIF-1α placentas (Figure 13, right) was greatly increased when compared to the 

control placentas.  In addition to the increase in giant cells in the HIF-1α placentas, the 

giant cells were located in areas of the placenta that predominantly contain labrynthine 

cells and very few giant cells, as seen in the control placenta (Figure 13, left).  The 

increase in giant cells and lack of spongiotrophoblasts may be due to a shuttling of the 

spongiotrophoblasts stem cells into the giant cell lineage. Together, the giant cell layer 

and spongiotrophoblast layer demonstrate the lack of organization apparent in the 

placentas with prolonged mRNA expression of HIF-1α (Figure 13). 

Decrease in maternal artery remodeling 
	
  

 After disorganization of the giant cell layer was confirmed, the functionality of 

the giant cells was investigated.  In order to determine if invasive giant cells were 

functioning normally and remodeling the maternal arteries, which is an essential step in 

appropriate placental and embryonic development, placentas were analyzed via in situ 

hybridization for Pecam-1 (maternal endothelial cell marker), which marks maternal 

endothelial cells [8,59].  Cells surrounding the maternal arteries (indicated by arrows) in 

HIF-1α placentas show considerably more Pecam-1 expression than control placentas, 

which show very little expression surrounding maternal arteries (Figure 14).  The greater 

expression in HIF-1α placentas suggests a lack of maternal remodeling, but to further 

investigate maternal remodeling, placentas were analyzed for Plf expression, which 

indicates the presence of invasive giant cells, and is a gene that is not directly under HIF-

1α regulation [28].    Placentas with prolonged HIF-1α (Figure 14, right) reveal a lack in 

Plf expression surrounding maternal arteries (cells surrounding arteries are indicated by 

arrows), where control mice (Figure 14, left) exhibited robust Plf expression surrounding  
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Figure 14. Prolonged HIF-1α gene expression prevents maternal artery remodeling. 

Placentas and fetuses from either LB2V5-CA-HIF-1α (right) or Lv-CMV-GFP-V5 (left) 

infected blastocysts were collected at embryonic day 14.5 (E14.5) and fixed in 

paraformaldehyde and embedded in paraffin.  Placental sections were hybridized with 

DIG-labeled riboprobes specific for Pecam-1 (maternal endothelial cell marker) or Plf 

(specific invasive giant cell marker), denoted by purple staining.  DIG-expression was 

analyzed using alkaline phosphatase immunohistochemistry.  Sections were 

counterstained with nuclear fast red.  Arrows indicate tissue surrounding maternal 

arteries. 
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Figure 14. 
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maternal arteries (Figure 14). The presence of maternal endothelial cells, along with the 

lack of invasive giant cells clearly illustrate that placentas with prolonged HIF-1α 

expression fail to remodel maternal arteries. Thus, indicating HIF-1α as a major regulator 

of maternal artery remodeling and placental development. 
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IV. DISCUSSION 

Altered Morphology 
	
  

Embryonic development occurs under low oxygen levels, and under low oxygen 

levels of HIF-1α are greater due to an increase in HIF-1α half-life.   During implantation, 

access to oxygen via the maternal blood supply causes a decrease in HIF-1α, due to a 

rapid proteasomal degradation (half-life of approximately 5 minutes) [60,61].  The access 

to oxygen resulting in a decrease in HIF-1α expression is believed to be what determines 

the nature of trophoblast cells in terms of proliferation versus differentiation [24,25]. 

Therefore, HIF-1α regulation would directly effect placental development. 

Our study suggests that prolonged HIF-1α expression dramatically alters placental 

morphology and possibly function by preventing differentiation into fully functioning 

trophoblast cells.  Trophoblast cells of placentas with prolonged expression of HIF-1α 

exhibit disorganization with numerous giant cells being expressed in the labyrinthine 

layer and compaction of the spongiotrophoblast layer.  Disorganization was also 

demonstrated by a decrease in branching morphogenesis of the labrynthine layer, which 

is responsible for nutrient transport [62].  Although this disorganization did not 

demonstrate a significant difference in placental or fetal weight at this stage of 

development (Figure 5), the difference in fetal and placental size may be more 

pronounced if carried out until birth.  One explanation for having no significant 

difference in fetal weights at E14.5 is that the placental invasion of maternal arteries had 

just completed, placental invasion is completed near E12 in mice [23].  Placental invasion 

of maternal arteries is key in placental development and determining whether a 

pregnancy will be successful; therefore, it may be expected that differences in pup weight 
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may not be apparent until later in the pregnancy, after the fetus has had time to fully 

develop [4,9]. 

 

Maternal artery remodeling 
	
  

 The results of this study indicated a notable inability of invasive giant cells to 

remodel maternal arteries.  The lack of invasive giant cell function was seen by both the 

presence of maternal endothelial cells surrounding arteries and a lack of invasive giant 

cells that should have replaced the maternal endothelial cells through the process of 

remodeling.  Remodeling of maternal arteries is mediated by invasive trophoblast giant 

cells that destroy maternal endothelial cells and replace them with endovascular 

trophoblast cells [9]. Pre-eclampsia is a disorder that effects approximately 5-7% of all 

pregnancies and is believed to result from inappropriate trophoblast invasion and 

remodeling of maternal arteries, as we have seen in this study [2,7,59,52,63].  However, 

the exact cause of pre-eclampsia has yet to be elucidated.  It is known that pre-eclampsia 

is characterized by the symptoms of high blood pressure and proteinuria during 

pregnancy, which can result in early delivery, and possible maternal and/or fetal mortality 

[6,7,64].  Vascular tension caused by overexpression of HIF-1α in the placenta during 

pregnancy may be one explanation for the increased blood pressure experienced by those 

who have pre-eclampsia.  It also follows that proteinuria is a result of this increased 

vascular tension that would also effect the kidneys and their function.  Understanding the 

role of HIF-1α regulation in placental development could aid in our understanding pre-

eclampsia as a whole. 
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Future studies 
	
  

Although this study provides evidence for the importance of regulation of HIF-1α 

expression to maintain placental organization and function of certain cell types, further 

studies must be completed in order to determine the effects of prolonged HIF-1α 

expression at birth.  In order to confirm that the placenta is not plastic in nature, placentas 

would need to be collected at birth.  Additionally, placental and pup weights would be 

taken at birth to determine if pups are small in comparison to controls because a decrease 

in birth weight is indicative of pre-eclampsia and other pregnancy associated disorders 

[6,7,47,64].  Another important aspect of many pregnancy-associated disorders is early 

delivery.  In order to determine if prolonged expression of HIF-1α causes early pup 

delivery, the time and embryonic day of delivery would need to be recorded.  In addition 

to examining birth weight, placental weight, and time of birth, additional factors that are 

common in pre-eclampsia could be studied.  Since pre-eclampsia is known for a lack of 

maternal spiral artery remodeling, as was evident in this study at E14.5, the additional 

symptoms of pre-eclampsia should be analyzed [6,7,9,63,64]. These include high 

maternal blood pressure, maternal proteinuria, circulating maternal soluble fms-like 

tyrosine kinase 1 (sFlt1), and glomerular injury [6,7,63-67].  Maternal blood pressure, 

protein levels, and sFlt1 would need to be tested before embryonic implantation, during 

pregnancy, and post birth.  These points are all necessary because women who 

experience pre-eclampsia usually exhibit normal blood pressure, low to no urine protein, 

and normal sFlt1 before or after birth, but display increased blood pressure and sFlt1 

levels, as well as proteinuria during pregnancy [6,7,47,64].  Since sFlt-1 is a direct target 

of HIF-1α, it would be expected that sFlt-1 levels would rise in our mice [63,65]. 
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Maternal kidneys collected at birth could be used to test for glomerular injury.  Since 

there is proteinuria in pre-eclampsia, some glomerular injury would be expected. [6, 65] 

In a very extreme case of pre-eclampsia known as hemolysis, elevated liver enzymes, and 

low platelets (HELLP) syndrome mothers experience extensive glomerular injury. 

Checking maternal kidneys would therefore be beneficial in identifying the severity of 

pre-eclampsia. 

Another study that would better elucidate the role of HIF-1α during placental 

development would include causing increased HIF-1α during specific time-points during 

placental development.  This study could be completed by cloning the oxygen insensitive 

form of HIF-1α used in this study into a lentiviral, tet-inducible construct.  The placenta 

would be infected in the same manner as in this study; however, the increased expression 

of HIF-1α would not be induced until addition of doxycycline to the system.  By this 

method of analysis, the critical time-points of placental development governed by HIF-1α 

could be determined.  This method could even allow for increase expression of HIF-1α 

only during the initial development of the placenta, around E9.5-11.5, followed by 

normal HIF-1α expression throughout the rest of the pregnancy.  The ability to narrow 

the window of HIF-1α increased expression could greatly increase our understanding of 

the role of HIF-1α on placental development and pregnancy associated disorders. 
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V. APPENDIX 
	
  

Abbreviations 
 

2-ME-2-methoxyoestradiol 

ARNT: Aryl hydrocarbon receptor nuclear translocator 

CA-HIF: Constitutively active- hypoxia inducible factor 

CMV: Cytomegalovirus 

COMT: cathechol-O-methyltransferase 

DIG-Digoxigenin 

d.p.c: days post copulation 

E14.5: embryonic day 14.5 

FIH: factor inhibiting HIF-1α  

Gcm1: glial cell marker 1 

GFP: Green Fluorescent Protein 

HELLP: hemolysis, elevated liver enzymes, and low platelets  

HIF-1α: hypoxia inducible factor 1 alpha 

HIF-1β: Hypoxia inducible factor-1β 

HRE: Hypoxia responsive element 
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ICM: inner cell mass 

ICR: imprinting control region 

IU: international units 

KO: Knock out 

KSOM: KCL Simplex Optimization Medium  

Mash2: Mammalian achaete-scute homologous protein-2   

NBT/BCIP: nitro-blue tetrazolium chloride and BCIP 5-bromo-4-chloro-3'

 indolyphosphate p-toluidine salt 

Pecam-1: platelet/endothelial cell adhesion molecule-1 

PHD: prolyl hydroxylase domain protein 

PBS: phosphate buffered saline 

PFA: paraformaldehyde 

PL2:  Placental lactogen II 

Plf: proliferin 

PlGF: placental growth factor  

pLv: Lentiviral plasmid 

PVDF: polyvinylidene fluoride 

sFlt1: soluble fms-like tyrosine kinase 1 
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Tpbpa/ 4311: Trophoblast specific protein alpha 

VEGF: vascular endothelial growth factor  

VHL: von Hippel-Lindau protein 
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