468 research outputs found

    Comparison of [11C]TZ1964B and [18F]MNI659 for PET imaging brain PDE10A in nonhuman primates

    Get PDF
    Phosphodiesterase 10A (PDE10A) inhibitors show therapeutic effects for diseases with striatal pathology. PET radiotracers have been developed to quantify in vivo PDE10A levels and target engagement for therapeutic interventions. The aim of this study was to compare two potent and selective PDE10A radiotracers, [(11)C]TZ1964B and [(18)F]MNI659 in the nonhuman primate (NHP) brain. Double scans in the same cynomolgus monkey on the same day were performed after injection of [(11)C]TZ1964B and [(18)F]MNI659. Specific uptake was determined in two ways: nondisplaceable binding potential (BP(ND)) was calculated using cerebellum as the reference region and the PDE‐10A enriched striatum as the target region of interest (ROI); the area under the time–activity curve (AUC) for the striatum to cerebellum ratio was also calculated. High‐performance liquid chromatography (HPLC) analysis of solvent‐extracted NHP plasma identified the percentage of intact tracer versus radiolabeled metabolites samples post injection of each radiotracer. Both radiotracers showed high specific accumulation in NHP striatum. [(11)C]TZ1964B has higher striatal retention and lower specific striatal uptake than [(18)F]MNI659. The BP(ND) estimates of [(11)C]TZ1964B were 3.72 by Logan Reference model (LoganREF) and 4.39 by simplified reference tissue model (SRTM); the BP(ND) estimates for [(18)F]MNI659 were 5.08 (LoganREF) and 5.33 (SRTM). AUC ratios were 5.87 for [(11)C]TZ1964B and 7.60 for [(18)F]MNI659. Based on BP(ND) values in NHP striatum, coefficients of variation were ~10% for [(11)C]TZ1964B and ~30% for [(18)F]MNI659. Moreover, the metabolism study showed the percentage of parent compounds were ~70% for [(11)C]TZ1964B and ~50% for [(18)F]MNI659 60 min post injection. These data indicate that either [(11)C]TZ1964B or [(18)F]MNI659 could serve as suitable PDE10A PET radiotracers with distinguishing features for particular clinical application

    Natural history of liver disease in a large international cohort of children with Alagille syndrome: Results from the GALA study

    Get PDF
    Background and Aims: Alagille syndrome (ALGS) is a multisystem disorder, characterized by cholestasis. Existing outcome data are largely derived from tertiary centers, and real‐world data are lacking. This study aimed to elucidate the natural history of liver disease in a contemporary, international cohort of children with ALGS. Approach and Results: This was a multicenter retrospective study of children with a clinically and/or genetically confirmed ALGS diagnosis, born between January 1997 and August 2019. Native liver survival (NLS) and event‐free survival rates were assessed. Cox models were constructed to identify early biochemical predictors of clinically evident portal hypertension (CEPH) and NLS. In total, 1433 children (57% male) from 67 centers in 29 countries were included. The 10 and 18‐year NLS rates were 54.4% and 40.3%. By 10 and 18 years, 51.5% and 66.0% of children with ALGS experienced ≥1 adverse liver‐related event (CEPH, transplant, or death). Children (>6 and ≤12 months) with median total bilirubin (TB) levels between ≥5.0 and 10.0 mg/dl were associated with a 4.8 (95% CI, 2.4–9.7) and 15.6 (95% CI, 8.7–28.2) increased risk of transplantation relative to <5.0 mg/dl. Median TB <5.0 mg/dl were associated with higher NLS rates relative to ≥5.0 mg/dl, with 79% reaching adulthood with native liver (p < 0.001). Conclusions: In this large international cohort of ALGS, only 40.3% of children reach adulthood with their native liver. A TB <5.0 mg/dl between 6 and 12 months of age is associated with better hepatic outcomes. These thresholds provide clinicians with an objective tool to assist with clinical decision‐making and in the evaluation of therapies.This study received funding support from the following agencies: The Alagille Syndrome Alliance, Mirum Pharmaceuticals, Inc., and Albireo Pharma, Inc., who provided unrestricted educational grants to the Hospital for Sick Children (SickKids Foundation). The study sponsors were not involved in the conduct of the research study or preparation of the manuscript

    Cell-based HTS identifies a chemical chaperone for preventing ER protein aggregation and proteotoxicity

    Get PDF
    The endoplasmic reticulum (ER) is responsible for folding secretory and membrane proteins, but disturbed ER proteostasis may lead to protein aggregation and subsequent cellular and clinical pathologies. Chemical chaperones have recently emerged as a potential therapeutic approach for ER stress-related diseases. Here, we identified 2-phenylimidazo[2,1-b]benzothiazole derivatives (IBTs) as chemical chaperones in a cell-based high-throughput screen. Biochemical and chemical biology approaches revealed that IBT21 directly binds to unfolded or misfolded proteins and inhibits protein aggregation. Finally, IBT21 prevented cell death caused by chemically induced ER stress and by a proteotoxin, an aggression-prone prion protein. Taken together, our data show the promise of IBTs as potent chemical chaperones that can ameliorate diseases resulting from protein aggregation under ER stress

    Notch Signaling Regulates Bile Duct Morphogenesis in Mice

    Get PDF
    BACKGROUND: Alagille syndrome is a developmental disorder caused predominantly by mutations in the Jagged1 (JAG1) gene, which encodes a ligand for Notch family receptors. A characteristic feature of Alagille syndrome is intrahepatic bile duct paucity. We described previously that mice doubly heterozygous for Jag1 and Notch2 mutations are an excellent model for Alagille syndrome. However, our previous study did not establish whether bile duct paucity in Jag1/Notch2 double heterozygous mice resulted from impaired differentiation of bile duct precursor cells, or from defects in bile duct morphogenesis. METHODOLOGY/PRINCIPAL FINDINGS: Here we characterize embryonic biliary tract formation in our previously described Jag1/Notch2 double heterozygous Alagille syndrome model, and describe another mouse model of bile duct paucity resulting from liver-specific deletion of the Notch2 gene. CONCLUSIONS/SIGNIFICANCE: Our data support a model in which bile duct paucity in Notch pathway loss of function mutant mice results from defects in bile duct morphogenesis rather than cell fate specification

    Monogenic diseases that can be cured by liver transplantation

    Get PDF
    While the prevalence of most diseases caused by single-gene mutations is low and defines them as rare conditions, all together, monogenic diseases account for approximately 10 in every 1000 births according to the World Health Organisation. Orthotopic liver transplantation (LT) could offer a therapeutic option in monogenic diseases in two ways: by substituting for an injured liver or by supplying a tissue that can replace a mutant protein. In this respect, LT may be regarded as the correction of a disease at the level of the dysfunctional protein. Monogenic diseases that involve the liver represent a heterogeneous group of disorders. In conditions associated with predominant liver parenchymal damage (i.e., genetic cholestatic disorders, Wilson's disease, hereditary hemochromatosis, tyrosinemia, α1 antitrypsin deficiency), hepatic complications are the major source of morbidity and LT not only replaces a dysfunctional liver but also corrects the genetic defect and effectively cures the disease. A second group includes liver-based genetic disorders characterised by an architecturally near-normal liver (urea cycle disorders, Crigler-Najjar syndrome, familial amyloid polyneuropathy, primary hyperoxaluria type 1, atypical haemolytic uremic syndrome-1). In these defects, extrahepatic complications are the main source of morbidity and mortality while liver function is relatively preserved. Combined transplantation of other organs may be required, and other surgical techniques, such as domino and auxiliary liver transplantation, have been attempted. In a third group of monogenic diseases, the underlying genetic defect is expressed at a systemic level and liver involvement is just one of the clinical manifestations. In these conditions, LT might only be partially curative since the abnormal phenotype is maintained by extrahepatic synthesis of the toxic metabolites (i.e., methylmalonic acidemia, propionic acidemia). This review focuses on principles of diagnosis, management and LT results in both paediatric and adult populations of selected liver-based monogenic diseases, which represent examples of different transplantation strategies, driven by the understanding of the expression of the underlying genetic defect. © 2013 European Association for the Study of the Liver

    Biliary atresia

    Get PDF
    Biliary atresia (BA) is a rare disease characterised by a biliary obstruction of unknown origin that presents in the neonatal period. It is the most frequent surgical cause of cholestatic jaundice in this age group. BA occurs in approximately 1/18,000 live births in Western Europe. In the world, the reported incidence varies from 5/100,000 to 32/100,000 live births, and is highest in Asia and the Pacific region. Females are affected slightly more often than males. The common histopathological picture is one of inflammatory damage to the intra- and extrahepatic bile ducts with sclerosis and narrowing or even obliteration of the biliary tree. Untreated, this condition leads to cirrhosis and death within the first years of life. BA is not known to be a hereditary condition. No primary medical treatment is relevant for the management of BA. Once BA suspected, surgical intervention (Kasai portoenterostomy) should be performed as soon as possible as operations performed early in life is more likely to be successful. Liver transplantation may be needed later if the Kasai operation fails to restore the biliary flow or if cirrhotic complications occur. At present, approximately 90% of BA patients survive and the majority have normal quality of life
    corecore