12 research outputs found

    2021 Taxonomic Update Of Phylum Negarnaviricota (Riboviria: Orthornavirae), Including The Large Orders Bunyavirales And Mononegavirales:Negarnaviricota Taxonomy Update 2021

    Get PDF

    2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales.

    Get PDF
    Correction to: 2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales. Archives of Virology (2021) 166:3567–3579. https://doi.org/10.1007/s00705-021-05266-wIn March 2021, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by four families (Aliusviridae, Crepuscuviridae, Myriaviridae, and Natareviridae), three subfamilies (Alpharhabdovirinae, Betarhabdovirinae, and Gammarhabdovirinae), 42 genera, and 200 species. Thirty-nine species were renamed and/or moved and seven species were abolished. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV.This work was supported in part through Laulima Government Solutions, LLC prime contract with the US National Institute of Allergy and Infectious Diseases (NIAID) under Contract No. HHSN272201800013C. J.H.K. performed this work as an employee of Tunnell Government Services (TGS), a subcontractor of Laulima Government Solutions, LLC under Contract No. HHSN272201800013C. This work was also supported in part with federal funds from the National Cancer Institute (NCI), National Institutes of Health (NIH), under Contract No. 75N91019D00024, Task Order No. 75N91019F00130 to I.C., who was supported by the Clinical Monitoring Research Program Directorate, Frederick National Lab for Cancer Research. This work was also funded in part by Contract No. HSHQDC-15-C-00064 awarded by DHS S&T for the management and operation of The National Biodefense Analysis and Countermeasures Center, a federally funded research and development center operated by the Battelle National Biodefense Institute (V.W.); and NIH contract HHSN272201000040I/HHSN27200004/D04 and grant R24AI120942 (N.V., R.B.T.). S.S. acknowledges partial support from the Special Research Initiative of Mississippi Agricultural and Forestry Experiment Station (MAFES), Mississippi State University, and the National Institute of Food and Agriculture, US Department of Agriculture, Hatch Project 1021494. Part of this work was supported by the Francis Crick Institute which receives its core funding from Cancer Research UK (FC001030), the UK Medical Research Council (FC001030), and the Wellcome Trust (FC001030).S

    2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales.

    Get PDF
    In March 2021, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by four families (Aliusviridae, Crepuscuviridae, Myriaviridae, and Natareviridae), three subfamilies (Alpharhabdovirinae, Betarhabdovirinae, and Gammarhabdovirinae), 42 genera, and 200 species. Thirty-nine species were renamed and/or moved and seven species were abolished. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV

    Molecular Population Genetics of Aspen Mosaic-Associated Virus in Finland and Sweden

    Get PDF
    Aspen mosaic-associated virus (AsMaV) is a newly identified Emaravirus, in the family Fimoviridae, Bunyavirales, associated with mosaic symptoms in aspen trees (Populus tremula). Aspen trees are widely distributed in Europe and understanding the population structure of AsMaV may aid in the development of better management strategies. The virus genome consists of five negative-sense single-stranded RNA (–ssRNA) molecules. To investigate the genetic diversity and population parameters of AsMaV, different regions of the genome were amplified and analyzed and full-length sequence of the divergent isolates were cloned and sequenced. The results show that RNA3 or nucleoprotein is a good representative for studying genetic diversity in AsMaV. Developed RT–PCR–RFLP was able to identify areas with a higher number of haplotypes and could be applied for screening the large number of samples. In general, AsMaV has a conserved genome and based on the phylogenetic studies, geographical structuring was observed in AsMaV isolates from Sweden and Finland, which could be attributed to founder effects. The genome of AsMaV is under purifying selection but not distributed uniformly on genomic RNAs. Distant AsMaV isolates displayed amino acid sequence variations compared to other isolates, and bioinformatic analysis predicted potential post-translational modification sites in some viral proteins

    Characterisation of a novel Emaravirus identified in mosaic‐diseased Eurasian aspen (Populus tremula)

    Get PDF
    Since Emaraviruses have been discovered in 2007 several new species were detected in a range of host plants. Five genome segments of a novel Emaravirus from mosaic‐diseased Eurasian aspen (Populus tremula) have been completely determined. The monocistronic, segmented ssRNA genome of the virus shows a genome organisation typical for Emaraviruses encoding the viral RNA‐dependent RNA polymerase (RdRP, 268.2 kDa) on RNA1 (7.1 kb), a glycoprotein precursor (GPP, 73.5 kDa) on RNA2 (2.3 kb), the viral nucleocapsid protein (N, 35.6 kDa) on RNA3 (1.6 kb), and a putative movement protein (MP, 41.0 kDa) on RNA4 (1.6 kb). The fifth identified genome segment (RNA5, 1.3 kb) encodes a protein of unknown function (P28, 28.1 kDa). We discovered that it is distantly related to proteins encoded by Emaraviruses, such as P4 of European mountain ash ringspot‐associated virus. All proteins from this group contain a central hydrophobic region with a conserved secondary structure and a hydrophobic amino acid stretch, bordered by two highly conserved positions, thus clearly representing a new group of homologues of Emaraviruses. The virus identified in Eurasian aspen is closely associated with observed leaf symptoms, such as mottle, yellow blotching, variegation and chloroses along veins. All five viral RNAs were regularly detectable by RT‐PCR in mosaic‐diseased P. tremula in Norway, Finland and Sweden (Fennoscandia). Observed symptoms and testing of mosaic‐diseased Eurasian aspen by virus‐specific RT‐PCR targeting RNA3 and RNA4 confirmed a wide geographic distribution of the virus in Fennoscandia. We could demonstrate that the mosaic‐disease is graft‐transmissible and confirmed that the virus is the causal agent by detection in symptomatic, graft‐inoculated seedlings used as rootstocks as well as in the virus‐infected scions used for graft‐inoculation. Owing to these characteristics, the virus represents a novel species within the genus Emaravirus and was tentatively denominated aspen mosaic‐associated virus.Peer Reviewe

    The Complex World of Emaraviruses—Challenges, Insights, and Prospects

    Get PDF
    Emaravirus (Order Bunyavirales; Family Fimoviridae) is a genus comprising over 20 emerging plant viruses with a worldwide distribution and economic impact. Emaraviruses infect a variety of host plants and have especially become prevalent in important long-living woody plants. These viruses are enveloped, with a segmented, single-stranded, negative-sense RNA genome and are transmitted by eriophyid mites or mechanical transmission. Emaraviruses have four core genome segments encoding an RNA-dependent RNA polymerase, a glycoprotein precursor, a nucleocapsid protein, and a movement protein. They also have additional genome segments, whose number varies widely. We report here that the proteins encoded by these segments form three main homology groups: a homolog of the sadwavirus Glu2 Pro glutamic protease; a protein involved in pathogenicity, which we named “ABC”; and a protein of unknown function, which we named “P55”. The distribution of these proteins parallels the emaravirus phylogeny and suggests, with other analyses, that emaraviruses should be split into at least two genera. Reliable diagnosis systems are urgently needed to detect emaraviruses, assess their economic and ecological importance, and take appropriate measures to prevent their spread (such as routine testing, hygiene measures, and control of mite vectors). Additional research needs include understanding the function of emaravirus proteins, breeding resistant plants, and clarifying transmission modes

    2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales

    Get PDF
    In March 2021, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by four families (Aliusviridae, Crepuscuviridae, Myriaviridae, and Natareviridae), three subfamilies (Alpharhabdovirinae, Betarhabdovirinae, and Gammarhabdovirinae), 42 genera, and 200 species. Thirty-nine species were renamed and/or moved and seven species were abolished. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV.Instituto de Patología VegetalFil: Kuhn, Jens H. National Institute of Allergy and Infectious Diseases. National Institutes of Health. Integrated Research Facility at Fort Detrick; Estados UnidosFil: Adkins, Scott. United States Department of Agriculture. Agricultural Research Service. US Horticultural Research Laboratory; Estados UnidosFil: Agwanda, Bernard R. National Museums of Kenya. Zoology Department; KeniaFil: Agwanda, Bernard R. Jomo Kenyatta University of Agriculture & Technology; KeniaFil: Kubrusli, Rim Al. Humboldt-Universität zu Berlin. Faculty of Life Sciences. Division Phytomedicine; AlemaniaFil: Alkhovsky, Sergey V. D.I. Ivanovsky Institute of Virology of N.F. Gamaleya National Center on Epidemiology and Microbiology of Ministry of Health of Russian Federation; RusiaFil: Amarasinghe, Gaya K. Washington University School of Medicine. Department of Pathology and Immunology; Estados UnidosFil: Avšič-Županc, Tatjana. University of Ljubljana. Faculty of Medicine; EsloveniaFil: Ayllón, María A. Universidad Politécnica de Madrid—Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria. Campus de Montegancedo. Centro de Biotecnología y Genómica de Plantas; EspañaFil: Ayllón, María A. Universidad Politécnica de Madrid. Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas. Departamento de Biotecnología-Biología Vegetal; EspañaFil: Bahl, Justin. University of Georgia. Center for Ecology of Infectious Diseases, Department of Infectious Diseases, Department of Epidemiology and Biostatistics, Insitute of Bioinformatics; Estados UnidosFil: Balkema-Buschmann, Anne. Institute of Novel and Emerging Infectious Diseases. Friedrich-Loeffler-Institut. Federal Research Institute for Animal Health; AlemaniaFil: Bejerman, Nicolas Esteban. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patología Vegetal; ArgentinaFil: Bejerman, Nicolas Esteban. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Fitopatología y Modelización Agrícola (UFyMA); ArgentinaFil: Debat, Humberto Julio. Instituto Nacional de Tecnología Agropecuaria (INTA). Instituto de Patología Vegetal; ArgentinaFil: Debat, Humberto Julio. Consejo Nacional de Investigaciones Científicas y Técnicas. Unidad de Fitopatología y Modelización Agrícola (UFyMA); ArgentinaFil: Zhou, Xueping. Chinese Academy of Agricultural Sciences. Institute of Plant Protection. State Key Laboratory for Biology of Plant Diseases and Insect Pests; Chin

    2021 Taxonomic update of phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales

    Full text link
    In March 2021, following the annual International Committee on Taxonomy of Viruses (ICTV) ratification vote on newly proposed taxa, the phylum Negarnaviricota was amended and emended. The phylum was expanded by four families (Aliusviridae, Crepuscuviridae, Myriaviridae, and Natareviridae), three subfamilies (Alpharhabdovirinae, Betarhabdovirinae, and Gammarhabdovirinae), 42 genera, and 200 species. Thirty-nine species were renamed and/or moved and seven species were abolished. This article presents the updated taxonomy of Negarnaviricota as now accepted by the ICTV

    2020 taxonomic update for phylum Negarnaviricota (Riboviria: Orthornavirae), including the large orders Bunyavirales and Mononegavirales

    No full text
    International audienc
    corecore