48 research outputs found

    Genetic variation in NDFIP1 modifies the metabolic patterns in immune cells of multiple sclerosis patients

    Get PDF
    Autoinmunidad; Marcadores genéticos; Trastornos neurológicosAutoimmunitat; Marcadors genètics; Trastorns neurològicsAutoimmunity; Genetic markers; Neurological disordersOne of the 233 polymorphisms associated with multiple sclerosis (MS) susceptibility lies within the NDFIP1 gene, and it was previously identified as eQTL in healthy controls. NDFIP1 shows interesting immune functions and is involved in the development of the central nervous system. We aimed at studying the NDFIP1 variant on activation and metabolism of immune cells. NDFIP1 mRNA and protein expression were assessed in PBMCs by qPCR and western blot in 87 MS patients and 84 healthy controls genotyped for rs4912622. Immune activation after PHA stimulation was evaluated by CD69 upregulation, and metabolic function of both basal and PHA-activated lymphocytes was studied by Seahorse Xfp-Analyzer. In minor-allele homozygous controls but not in patients, we found higher NDFIP1 expression, significantly reduced protein levels, and CD69 upregulation in B- and T-cells. PBMCs from minor-allele homozygous controls showed significantly higher basal mitochondrial respiration and ATP production compared to major-allele carriers, while minor-allele homozygous patients showed significantly lower metabolic activity than carriers of the major allele. In conclusion, we describe associations in minor-allele homozygous controls with lower levels of NDFIP1 protein, CD69 upregulation, and raised mitochondrial activity, which are not replicated in MS patients, suggesting a NDFIP1 differential effect in health and disease.This work was supported by the projects PI16/01259 and PI20/01634, integrated in the Plan Nacional de I + D + I, AES 2013–2016 and 2017–2020; funded by the ISCIII and co-funded by the European Regional Development Fund (ERDF) "A way to make Europe”. LEP is recipient of a contract from “REEM: Red Española de Esclerosis Múltiple” (RETICS-REEM RD16/0015/0013; www.reem.es). AGJ and JAZ hold contracts from the program “Promoción de empleo joven y garantía juvenil-CAM” (PEJ2018-003125-A and PEJD-2019-PRE/SAL-16662)

    Nonviral-Mediated Hepatic Expression of IGF-I Increases Treg Levels and Suppresses Autoimmune Diabetes in Mice

    Get PDF
    Altres ajuts: This work was supported by grants from Ministerio de Ciencia e Innovación (SAF2005-01262 and SAF2008-00962) and from the European Community (FP6 CLINIGENE, LSHB-CT-2006-018933). X.M.A., J.A., and A.R. were recipients of a predoctoral fellowship from Ministerio de Educación, Cultura y Deporte, and D.C. received a predoctoral fellowship from Instituto de Salud Carlos III, Spain. C.J.M.In type 1 diabetes, loss of tolerance to β-cell antigens results in T-cell-dependent autoimmune destruction of β cells. The abrogation of autoreactive T-cell responses is a prerequisite to achieve long-lasting correction of the disease. The liver has unique immunomodulatory properties and hepatic gene transfer results in tolerance induction and suppression of autoimmune diseases, in part by regulatory T-cell (Treg) activation. Hence, the liver could be manipulated to treat or prevent diabetes onset through expression of key genes. IGF-I may be an immunomodulatory candidate because it prevents autoimmune diabetes when expressed in β cells or subcutaneously injected. Here, we demonstrate that transient, plasmid-derived IGF-I expression in mouse liver suppressed autoimmune diabetes progression. Suppression was associated with decreased islet inflammation and β-cell apoptosis, increased β-cell replication, and normalized β-cell mass. Permanent protection depended on exogenous IGF-I expression in liver nonparenchymal cells and was associated with increased percentage of intrapancreatic Tregs. Importantly, Treg depletion completely abolished IGF-I-mediated protection confirming the therapeutic potential of these cells in autoimmune diabetes. This study demonstrates that a nonviral gene therapy combining the immunological properties of the liver and IGF-I could be beneficial in the treatment of the disease

    Insulin-like growth factor 2 overexpression induces β-Cell dysfunction and increases beta-cell susceptibility to damage

    Get PDF
    The human insulin-like growth factor 2 (IGF2) and insulin genes are located within the same genomic region. Although human genomic studies have demonstrated associations between diabetes and the insulin/IGF2 locus or the IGF2 mRNA-binding protein 2 (IGF2BP2), the role of IGF2 in diabetes pathogenesis is not fully understood. We previously described that transgenic mice overexpressing IGF2 specifically in β-cells (Tg-IGF2) develop a pre-diabetic state. Here, we characterized the effects of IGF2 on β-cell functionality. Overexpression of IGF2 led to β-cell dedifferentiation and endoplasmic reticulum stress causing islet dysfunction in vivo. Both adenovirus-mediated overexpression of IGF2 and treatment of adult wild-type islets with recombinant IGF2 in vitro further confirmed the direct implication of IGF2 on β-cell dysfunction. Treatment of Tg-IGF2 mice with subdiabetogenic doses of streptozotocin or crossing these mice with a transgenic model of islet lymphocytic infiltration promoted the development of overt diabetes, suggesting that IGF2 makes islets more susceptible to β-cell damage and immune attack. These results indicate that increased local levels of IGF2 in pancreatic islets may predispose to the onset of diabetes. This study unravels an unprecedented role of IGF2 on β-cells function

    Mammographic density and breast cancer in women from high risk families

    Get PDF
    Introduction: Mammographic density (MD) is one of the strongest determinants of sporadic breast cancer (BC). In this study, we compared MD in BRCA1/2 mutation carriers and non-carriers from BRCA1/2 mutation-positive families and investigated the association between MD and BC among BRCA1/2 mutation carriers per type of mutation and tumor subtype. Methods: The study was carried out in 1039 female members of BRCA1 and BRCA2 mutation-positive families followed at 16 Spanish Genetic Counseling Units. Participants' density was scored retrospectively from available mammograms by a single blinded radiologist using a 5-category scale (75 %). In BC cases, we selected mammograms taken prior to diagnosis or from the contralateral breast, whereas, in non-cases, the last screening mammogram was evaluated. MD distribution in carriers and non-carriers was compared using ordinal logistic models, and the association between MD and BC in BRCA1/2 mutation carriers was studied using logistic regression. Huber-White robust estimators of variance were used to take into account correlations between family members. A similar multinomial model was used to explore this association by BC subtype. Results: We identified and scored mammograms from 341 BRCA1, 350 BRCA2 mutation carriers and 229 non-carriers. Compared to non-carriers, MD was significantly lower among BRCA2 mutation carriers (odds ratio (OR) =0.71; P-value=0.04), but not among BRCA1 carriers (OR=0.84; P-value=0.33). MD was associated with subsequent development BC (OR per category of MD=1.45; 95 % confidence interval=1.18-1.78, P-value<0.001), with no significant differences between BRCA1 and BRCA2 mutation carriers (P-value=0.48). Finally, no statistically significant differences were observed in the association of MD with specific BC subtypes. Conclusions: Our study, the largest to date on this issue, confirms that MD is an independent risk factor for all BC subtypes in either BRCA1 and BRCA2 mutation carriers, and should be considered a phenotype risk marker in this context

    Vascular Endothelial Growth Factor-Mediated Islet Hypervascularization and Inflammation Contribute to Progressive Reduction of β-Cell Mass

    Get PDF
    Type 2 diabetes (T2D) results from insulin resistance and inadequate insulin secretion. Insulin resistance initially causes compensatory islet hyperplasia that progresses to islet disorganization and altered vascularization, inflammation, and, finally, decreased functional β-cell mass and hyperglycemia. The precise mechanism(s) underlying β-cell failure remain to be elucidated. In this study, we show that in insulin-resistant high-fat diet-fed mice, the enhanced islet vascularization and inflammation was parallel to an increased expression of vascular endothelial growth factor A (VEGF). To elucidate the role of VEGF in these processes, we have genetically engineered β-cells to overexpress VEGF (in transgenic mice or after adeno-associated viral vector-mediated gene transfer). We found that sustained increases in β-cell VEGF levels led to disorganized, hypervascularized, and fibrotic islets, progressive macrophage infiltration, and proinflammatory cytokine production, including tumor necrosis factor-α and interleukin-1β. This resulted in impaired insulin secretion, decreased β-cell mass, and hyperglycemia with age. These results indicate that sustained VEGF upregulation may participate in the initiation of a process leading to β-cell failure and further suggest that compensatory islet hyperplasia and hypervascularization may contribute to progressive inflammation and β-cell mass loss during T2D

    All-sky Medium Energy Gamma-ray Observatory: Exploring the Extreme Multimessenger Universe

    Get PDF
    The All-sky Medium Energy Gamma-ray Observatory (AMEGO) is a probe class mission concept that will provide essential contributions to multimessenger astrophysics in the late 2020s and beyond. AMEGO combines high sensitivity in the 200 keV to 10 GeV energy range with a wide field of view, good spectral resolution, and polarization sensitivity. Therefore, AMEGO is key in the study of multimessenger astrophysical objects that have unique signatures in the gamma-ray regime, such as neutron star mergers, supernovae, and flaring active galactic nuclei. The order-of-magnitude improvement compared to previous MeV missions also enables discoveries of a wide range of phenomena whose energy output peaks in the relatively unexplored medium-energy gamma-ray band

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    Mitochondrial physiology

    Get PDF
    As the knowledge base and importance of mitochondrial physiology to evolution, health and disease expands, the necessity for harmonizing the terminology concerning mitochondrial respiratory states and rates has become increasingly apparent. The chemiosmotic theory establishes the mechanism of energy transformation and coupling in oxidative phosphorylation. The unifying concept of the protonmotive force provides the framework for developing a consistent theoretical foundation of mitochondrial physiology and bioenergetics. We follow the latest SI guidelines and those of the International Union of Pure and Applied Chemistry (IUPAC) on terminology in physical chemistry, extended by considerations of open systems and thermodynamics of irreversible processes. The concept-driven constructive terminology incorporates the meaning of each quantity and aligns concepts and symbols with the nomenclature of classical bioenergetics. We endeavour to provide a balanced view of mitochondrial respiratory control and a critical discussion on reporting data of mitochondrial respiration in terms of metabolic flows and fluxes. Uniform standards for evaluation of respiratory states and rates will ultimately contribute to reproducibility between laboratories and thus support the development of data repositories of mitochondrial respiratory function in species, tissues, and cells. Clarity of concept and consistency of nomenclature facilitate effective transdisciplinary communication, education, and ultimately further discovery

    GM-CSF Controls Nonlymphoid Tissue Dendritic Cell Homeostasis but Is Dispensable for the Differentiation of Inflammatory Dendritic Cells

    Get PDF
    SummaryGM-CSF (Csf-2) is a critical cytokine for the in vitro generation of dendritic cells (DCs) and is thought to control the development of inflammatory DCs and resident CD103+ DCs in some tissues. Here we showed that in contrast to the current understanding, Csf-2 receptor acts in the steady state to promote the survival and homeostasis of nonlymphoid tissue-resident CD103+ and CD11b+ DCs. Absence of Csf-2 receptor on lung DCs abrogated the induction of CD8+ T cell immunity after immunization with particulate antigens. In contrast, Csf-2 receptor was dispensable for the differentiation and innate function of inflammatory DCs during acute injuries. Instead, inflammatory DCs required Csf-1 receptor for their development. Thus, Csf-2 is important in vaccine-induced CD8+ T cell immunity through the regulation of nonlymphoid tissue DC homeostasis rather than control of inflammatory DCs in vivo

    31st Annual Meeting and Associated Programs of the Society for Immunotherapy of Cancer (SITC 2016) : part two

    Get PDF
    Background The immunological escape of tumors represents one of the main ob- stacles to the treatment of malignancies. The blockade of PD-1 or CTLA-4 receptors represented a milestone in the history of immunotherapy. However, immune checkpoint inhibitors seem to be effective in specific cohorts of patients. It has been proposed that their efficacy relies on the presence of an immunological response. Thus, we hypothesized that disruption of the PD-L1/PD-1 axis would synergize with our oncolytic vaccine platform PeptiCRAd. Methods We used murine B16OVA in vivo tumor models and flow cytometry analysis to investigate the immunological background. Results First, we found that high-burden B16OVA tumors were refractory to combination immunotherapy. However, with a more aggressive schedule, tumors with a lower burden were more susceptible to the combination of PeptiCRAd and PD-L1 blockade. The therapy signifi- cantly increased the median survival of mice (Fig. 7). Interestingly, the reduced growth of contralaterally injected B16F10 cells sug- gested the presence of a long lasting immunological memory also against non-targeted antigens. Concerning the functional state of tumor infiltrating lymphocytes (TILs), we found that all the immune therapies would enhance the percentage of activated (PD-1pos TIM- 3neg) T lymphocytes and reduce the amount of exhausted (PD-1pos TIM-3pos) cells compared to placebo. As expected, we found that PeptiCRAd monotherapy could increase the number of antigen spe- cific CD8+ T cells compared to other treatments. However, only the combination with PD-L1 blockade could significantly increase the ra- tio between activated and exhausted pentamer positive cells (p= 0.0058), suggesting that by disrupting the PD-1/PD-L1 axis we could decrease the amount of dysfunctional antigen specific T cells. We ob- served that the anatomical location deeply influenced the state of CD4+ and CD8+ T lymphocytes. In fact, TIM-3 expression was in- creased by 2 fold on TILs compared to splenic and lymphoid T cells. In the CD8+ compartment, the expression of PD-1 on the surface seemed to be restricted to the tumor micro-environment, while CD4 + T cells had a high expression of PD-1 also in lymphoid organs. Interestingly, we found that the levels of PD-1 were significantly higher on CD8+ T cells than on CD4+ T cells into the tumor micro- environment (p < 0.0001). Conclusions In conclusion, we demonstrated that the efficacy of immune check- point inhibitors might be strongly enhanced by their combination with cancer vaccines. PeptiCRAd was able to increase the number of antigen-specific T cells and PD-L1 blockade prevented their exhaus- tion, resulting in long-lasting immunological memory and increased median survival
    corecore