21 research outputs found

    Desarrollo de técnicas serológicas para el diagnóstico de la neosporosis canina

    Get PDF
    Neospora caninum es un coccidio parásito que está considerado actualmente como uno de las principales agentes productores de aborto en el ganado bovino en todo el mundo. Por su parte, en el perro la infección por N. caninum puede originar un cuadro neurológico. El diagnóstico in vivo de la neosporosis canina se puede realizar mediante la observación de signos clínicos que siempre debe confirmarse mediante la realización de un diagnóstico laboratorial. El diagnóstico laboratorial incluye, por un lado, la detección directa de ooquistes en las muestras de heces y, por otro, la detección de anticuerpos específicos en muestras de suero que permite evidenciar la transmisión congénita, así como detectar la infección en los animales adultos. Actualmente, no se dispone de una técnica serológica normalizada y comúnmente aceptada, sino que se han desarrollado varias técnicas con distintos puntos de corte para cada aplicación particular y con diferentes criterios para la interpretación de los resultados. De acuerdo con las necesidades que plantea el empleo de las actuales técnicas serológicas en el diagnóstico de la neosporosis canina en los animales adultos, se propuso la realización de dos objetivos en el presente trabajo de investigación que a continuación se detallan

    Toxoplasma gondii and Neospora caninum seroprevalences in domestic South American camelids of the Peruvian Andes

    Get PDF
    The objective of this study was to investigate the presence of Toxoplasma gondii- and Neospora caninum-specific antibodies in domestic South American camelids (SAC) (llamas and alpacas) from the Peruvian Andes through a cross-sectional study. A wide panel of serum samples collected from 1,845 llamas and 2,874 alpacas from the two main SAC production areas of Peru was selected. Immunofluorescence antibody technique was employed to detect and titrate specific anti-T. gondii and anti-N. caninum immunoglobulins G in serum samples. The association between T. gondii and N. caninum seroprevalence and the geographical origin (Central and South Peruvian Andes) was evaluated. Anti-T. gondii antibodies were found in 460 (24.9%) llamas and 706 (24.6%) alpacas, whereas anti-N. caninum antibodies were detected in 153 (8.3%) llamas and 425 (14.8%) alpacas. Toxoplasma gondii infection was strongly associated with the South Peruvian Andes where moderate climate conditions, larger human population, compared to the Central region, and the presence of wildlife definitive hosts could favor horizontal transmission to SAC. In contrast, N. caninum infection was not associated with the geographical region. These results indicate that T. gondii and N. caninum infections are highly and moderately widespread, respectively, in both species of domestic SAC studied in the sampled areas and appropriate control measures should be undertaken to reduce the prevalence of both parasitic infections

    Virulence in Mice of a Toxoplasma gondii Type II Isolate Does Not Correlate With the Outcome of Experimental Infection in Pregnant Sheep

    Get PDF
    [EN] Toxoplasma gondii is an apicomplexan parasite that infects almost all warm-blooded animals. Little is known about how the parasite virulence in mice extrapolates to other relevant hosts. In the current study, in vitro phenotype and in vivo behavior in mice and sheep of a type II T. gondii isolate (TgShSp1) were compared with the reference type II T. gondii isolate (TgME49). The results of in vitro assays and the intraperitoneal inoculation of tachyzoites in mice indicated an enhanced virulence for the laboratory isolate, TgME49, compared to the recently obtained TgShSp1 isolate. TgShSp1 proliferated at a slower rate and had delayed lysis plaque formation compared to TgME49, but it formed more cyst-like structures in vitro. No mortality was observed in adult mice after infection with 1-105 tachyzoites intraperitoneally or with 25-2,000 oocysts orally of TgShSp1. In sheep orally challenged with oocysts, TgME49 infection resulted in sporadically higher rectal temperatures and higher parasite load in cotyledons from ewes that gave birth and brain tissues of the respective lambs, but no differences between these two isolates were found on fetal/lamb mortality or lesions and number of T. gondii-positive lambs. The congenital infection after challenge at mid-pregnancy with TgShSp1, measured as offspring mortality and vertical transmission, was different depending on the challenged host. In mice, mortality in 50% of the pups was observed when a dam was challenged with a high oocyst dose (500 TgShSp1 oocysts), whereas in sheep infected with the same dose of oocysts, mortality occurred in all fetuses. Likewise, mortality of 9 and 27% of the pups was observed in mice after infection with 100 and 25 TgShSp1 oocysts, respectively, while in sheep, infection with 50 and 10 TgShSp1 oocysts triggered mortality in 68 and 66% of the fetuses/lambs. Differences in vertical transmission in the surviving offspring were only found with the lower oocyst doses (100% after infection with 10 TgShSp1 oocysts in sheep and only 37% in mice after infection with 25 TgShSp1 oocysts). In conclusion, virulence in mice of T. gondii type II isolates may not be a good indicator to predict the outcome of infection in pregnant sheepSIRS-S is supported by a fellowship from the Spanish Ministry of Education, Culture, and Sports (MECD), as a part of the Program of Training of University Teaching Staff (FPU, grant number FPU13/03438) and a mobility grant for predoctoral short stays in R+D centers (EST16/0719). DG-E is the recipient of a postdoctoral contract from the Junta de Castilla y León, partially funded by the European Social Fund (European Union). NA-V is the recipient of a predoctoral contract from the Ministerio de Economía, Industria y Competitividad (Ref. BES-2016-076513). This work was supported by the Ministry of Economy and Competitiveness (AGL2016-75935-C2-1-R and C2-2-R), the Community of Madrid, Spain (PLATESA, S2013/ABI2906), Junta de Castilla y León (LE080U16), and a grant of the Swiss National Science Foundation to AH (project No. 310030_165782

    Virulence in Mice of a Toxoplasma gondii Type II Isolate Does Not Correlate With the Outcome of Experimental Infection in Pregnant Sheep

    Get PDF
    Toxoplasma gondii is an apicomplexan parasite that infects almost all warm-blooded animals. Little is known about how the parasite virulence in mice extrapolates to other relevant hosts. In the current study, in vitro phenotype and in vivo behavior in mice and sheep of a type II T. gondii isolate (TgShSp1) were compared with the reference type II T. gondii isolate (TgME49). The results of in vitro assays and the intraperitoneal inoculation of tachyzoites in mice indicated an enhanced virulence for the laboratory isolate, TgME49, compared to the recently obtained TgShSp1 isolate. TgShSp1 proliferated at a slower rate and had delayed lysis plaque formation compared to TgME49, but it formed more cyst-like structures in vitro. No mortality was observed in adult mice after infection with 1–105 tachyzoites intraperitoneally or with 25–2,000 oocysts orally of TgShSp1. In sheep orally challenged with oocysts, TgME49 infection resulted in sporadically higher rectal temperatures and higher parasite load in cotyledons from ewes that gave birth and brain tissues of the respective lambs, but no differences between these two isolates were found on fetal/lamb mortality or lesions and number of T. gondii-positive lambs. The congenital infection after challenge at mid-pregnancy with TgShSp1, measured as offspring mortality and vertical transmission, was different depending on the challenged host. In mice, mortality in 50% of the pups was observed when a dam was challenged with a high oocyst dose (500 TgShSp1 oocysts), whereas in sheep infected with the same dose of oocysts, mortality occurred in all fetuses. Likewise, mortality of 9 and 27% of the pups was observed in mice after infection with 100 and 25 TgShSp1 oocysts, respectively, while in sheep, infection with 50 and 10 TgShSp1 oocysts triggered mortality in 68 and 66% of the fetuses/lambs. Differences in vertical transmission in the surviving offspring were only found with the lower oocyst doses (100% after infection with 10 TgShSp1 oocysts in sheep and only 37% in mice after infection with 25 TgShSp1 oocysts). In conclusion, virulence in mice of T. gondii type II isolates may not be a good indicator to predict the outcome of infection in pregnant sheep

    Clonal chromosomal mosaicism and loss of chromosome Y in elderly men increase vulnerability for SARS-CoV-2

    Full text link
    The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, COVID-19) had an estimated overall case fatality ratio of 1.38% (pre-vaccination), being 53% higher in males and increasing exponentially with age. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, we found 133 cases (1.42%) with detectable clonal mosaicism for chromosome alterations (mCA) and 226 males (5.08%) with acquired loss of chromosome Y (LOY). Individuals with clonal mosaic events (mCA and/or LOY) showed a 54% increase in the risk of COVID-19 lethality. LOY is associated with transcriptomic biomarkers of immune dysfunction, pro-coagulation activity and cardiovascular risk. Interferon-induced genes involved in the initial immune response to SARS-CoV-2 are also down-regulated in LOY. Thus, mCA and LOY underlie at least part of the sex-biased severity and mortality of COVID-19 in aging patients. Given its potential therapeutic and prognostic relevance, evaluation of clonal mosaicism should be implemented as biomarker of COVID-19 severity in elderly people. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, individuals with clonal mosaic events (clonal mosaicism for chromosome alterations and/or loss of chromosome Y) showed an increased risk of COVID-19 lethality

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Abstract Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    Mice congenitally infected with low-to-moderate virulence Neospora caninum isolates exhibited clinical reactivation during the mating period without transmission to the next generation

    No full text
    Endogenous transplacental transmission (EnTT) is the major transmission route of Neospora caninum in cattle. Thus, the development of a standardised experimental model of EnTT is needed for more appropriate testing of parasite biology and control strategies. A recent study reported up to 40–50% EnTT rates in chronically infected dams with either high or low-to-moderate virulence isolates, although low fertility rates were observed in dams inoculated with the high virulence isolate. Therefore, low-to-moderate virulence N. caninum isolates (Nc-Spain 3H; G1 and Nc-Spain 8; G2) that previously showed high TT rates versus low mortality and morbidity rates in a congenital mouse model were inoculated into BALB/c dams (first generation). The new approach followed in the present study aimed to start with a high number of congenitally infected mice (second generation), which allowed a more efficient EnTT from congenitally infected dams to their progeny (third generation). Interestingly, a reactivation of infection occurred in several congenitally infected non-pregnant females (second generation) from both infected groups. This fact was evidenced by neosporosis-associated clinical signs after mating accompanied by an increase of specific antibody levels (IgG1, IgG2a and specific antibodies against rNcGRA7) (P < 0.0001; one-way ANOVA). Moreover, a higher number of PCR-positive mice compared to pregnant females were observed (P < 0.05; Fisher’s exact test). These results support the hypothesis that only mice without clinical signs and with a low parasite burden in the brain became pregnant, which may explain the posterior failure in inducing EnTT from the second to the third generation. These findings confirm that this mouse model is not a suitable experimental EnTT model for testing the efficacy of drugs and vaccine candidates against EnTT. The employment of other putative suitable species with a similar placenta structure, such as small ruminants, should be taken into consideration

    N-terminal fusion of a toll-like receptor 2-ligand to a Neospora caninum chimeric antigen efficiently modifies the properties of the specific immune response

    No full text
    Immunoprophylactic products against neosporosis during pregnancy should induce an appropriately balanced immune response. In this respect, OprI, a bacterial lipoprotein targeting toll like receptor (TLR)2, provides promising adjuvant properties. We report on the manipulation of the innate and the T-cell immune response through the fusion of OprI with the Neospora caninum chimeric protein Mic3-1-R. In contrast to Mic3-1-R, OprI-MIC3-1-R significantly activated bone-marrow dendritic cells from naïve mice. Mice immunized with OprI-Mic3-1-R induced an immune response with mixed T helper (Th)1 and Th2 properties (high levels of both immunoglobulin (Ig)G1 and IgG2a and of interleukin (IL)-10, IL-12(p70) and interferon-γ responses) whereas Mic3-1-R+saponin induced a clear Th2-biased response (low IgG2a and high IL-4 and IL-10). After mating and challenge with N. caninum, increased expression of interferon-γ was only found in placentas from OprI-Mic3-1-R immunized dams. However, no protection against vertical transmission and neonatal mortality was observed in either of the two groups. These results indicated that more exhaustive studies must be done to elucidate the immune mechanisms associated with transplacental transmission. Antigen linkage to TLR2-ligands, such as OprI, is a useful tool to investigate this enigma by reorienting the innate and adaptive immune responses against other candidate antigens in future studies
    corecore