43 research outputs found

    Optimized intramuscular immunization with VSV-vectored spike protein triggers a superior immune response to SARS-CoV-2.

    Get PDF
    Immunization with vesicular stomatitis virus (VSV)-vectored COVID-19 vaccine candidates expressing the SARS-CoV-2 spike protein in place of the VSV glycoprotein relies implicitly on expression of the ACE2 receptor at the muscular injection site. Here, we report that such a viral vector vaccine did not induce protective immunity following intramuscular immunization of K18-hACE2 transgenic mice. However, when the viral vector was trans-complemented with the VSV glycoprotein, intramuscular immunization resulted in high titers of spike-specific neutralizing antibodies. The vaccinated animals were fully protected following infection with a lethal dose of SARS-CoV-2-SD614G via the nasal route, and partially protected if challenged with the SARS-CoV-2Delta variant. While dissemination of the challenge virus to the brain was completely inhibited, replication in the lung with consequent lung pathology was not entirely controlled. Thus, intramuscular immunization was clearly enhanced by trans-complementation of the VSV-vectored vaccines by the VSV glycoprotein and led to protection from COVID-19, although not achieving sterilizing immunity

    Antidotal efficacies of the cyanide antidote candidate dimethyl trisulfide alone and in combination with cobinamide derivatives

    Get PDF
    Formulation optimization and antidotal combination therapy are the two important tools to enhance the antidotal protection of the cyanide (CN) antidote dimethyl trisulfide (DMTS). The focus of this study is to demonstrate how the formulation with polysorbate 80 (Poly80), an excipient used in pharmaceutical technology, and the combinations with other CN antidotes having different mechanisms of action enhance the antidotal efficacy of the unformulated (neat) DMTS. The LD50 for CN was determined by the statistical Dixon up-and-down method on mice. Antidotal efficacy was expressed as antidotal potency ratio (APR). CN was injected subcutaneously one minute prior to the antidotes’ injection intramuscularly. The APR values of 1.17 (dose: 25 mg/kg bodyweight) and 1.45 (dose: 50 mg/kg bodyweight) of the neat DMTS were significantly enhanced by the Poly80 formulation at both investigated doses to 2.03 and 2.33, respectively. The combination partners for the Poly80 formulated DMTS (DMTS-Poly80; 25 and 50 mg/kg bodyweight) were 4-nitrocobinamide (4NCbi) (20 mg/kg bodyweight) and aquohydroxocobinamide (AHCbi; 50, 100, and 250 mg/kg bodyweight). When DMTS-Poly80 (25 and 50 mg/kg bodyweight; APR = 2.03 and 2.33, respectively) was combined with 4NCbi (20 mg/kg bodyweight; APR = 1.35), significant increase in the APR values were noted at both DMTS doses (APR = 2.38 and 3.12, respectively). AHCbi enhanced the APR of DMTS-Poly80 (100 mg/kg bodyweight; APR = 3.29) significantly only at the dose of 250 mg/kg bodyweight (APR = 5.86). These studies provided evidence for the importance of the formulation with Poly80 and the combinations with cobinamide derivatives with different mechanisms of action for DMTS as a CN antidote candidate

    Selective Abrogation of Major Histocompatibility Complex Class II Expression on Extrahematopoietic Cells in Mice Lacking Promoter IV of the Class II Transactivator Gene

    Get PDF
    MHC class II (MHCII) molecules play a pivotal role in the induction and regulation of immune responses. The transcriptional coactivator class II transactivator (CIITA) controls MHCII expression. The CIITA gene is regulated by three independent promoters (pI, pIII, pIV). We have generated pIV knockout mice. These mice exhibit selective abrogation of interferon (IFN)-γ–induced MHCII expression on a wide variety of non-bone marrow–derived cells, including endothelia, epithelia, astrocytes, and fibroblasts. Constitutive MHCII expression on cortical thymic epithelial cells, and thus positive selection of CD4+ T cells, is also abolished. In contrast, constitutive and inducible MHCII expression is unaffected on professional antigen-presenting cells, including B cells, dendritic cells, and IFN-γ–activated cells of the macrophage lineage. pIV−/− mice have thus allowed precise definition of CIITA pIV usage in vivo. Moreover, they represent a unique animal model for studying the significance and contribution of MHCII-mediated antigen presentation by nonprofessional antigen-presenting cells in health and disease

    Maturation of Dendritic Cells Is Accompanied by Rapid Transcriptional Silencing of Class II Transactivator (Ciita) Expression

    Get PDF
    Cell surface expression of major histocompatibility complex class II (MHCII) molecules is increased during the maturation of dendritic cells (DCs). This enhances their ability to present antigen and activate naive CD4+ T cells. In contrast to increased cell surface MHCII expression, de novo biosynthesis of MHCII mRNA is turned off during DC maturation. We show here that this is due to a remarkably rapid reduction in the synthesis of class II transactivator (CIITA) mRNA and protein. This reduction in CIITA expression occurs in human monocyte-derived DCs and mouse bone marrow–derived DCs, and is triggered by a variety of different maturation stimuli, including lipopolysaccharide, tumor necrosis factor α, CD40 ligand, interferon α, and infection with Salmonella typhimurium or Sendai virus. It is also observed in vivo in splenic DCs in acute myelin oligodendrocyte glycoprotein induced experimental autoimmune encephalitis. The arrest in CIITA expression is the result of a transcriptional inactivation of the MHC2TA gene. This is mediated by a global repression mechanism implicating histone deacetylation over a large domain spanning the entire MHC2TA regulatory region

    MOESM1 of Temperature variability in the day–night cycle is associated with further intracranial pressure during therapeutic hypothermia

    Get PDF
    Additional file 1. Data regarding heart rate, blood pressure, and ICP. This Table shows the values obtained for the variables derived from heart rate (HR) and mean blood pressure (mBP) that are the counterpart of the variables obtained for temperature. HR and mBP data from day 6 of monitoring of patient #2 and HR data from day 3 of monitoring of patient #3 displayed artifact and were not included in the Table. Legend: BPV, blood pressure variability, defined as the ratio between the standard deviation of mean blood pressure during the nocturnal period (18:00 to 6:00) and the preceding diurnal period (6:00 to 18:00); HRV, heart rate variability; HRVd, standard deviation of NN interval during the diurnal period; HRVdn, standard deviation of NN interval during 24 h; HRVn, standard deviation of NN interval during the nocturnal period; HRVn/d, ratio between standard deviation of NN interval during the nocturnal and preceding diurnal periods; ICP24, mean intracranial pressure during 24 h after the monitoring day of HR and BP; mBP, mean blood pressure during 24 h

    MOESM2 of Temperature variability in the day–night cycle is associated with further intracranial pressure during therapeutic hypothermia

    Get PDF
    Additional file 2. Statistical analysis (regression analysis, ANOVA) regarding correlation between heart rate and blood pressure variables with ICP24. This Table shows that there is no statistical correlation between heart rate and blood pressure variables and intracranial pressure across the following day. Legend: BPV, blood pressure variability, defined as the ratio between the standard deviation of mean blood pressure during the nocturnal period (18:00 to 6:00) and the preceding diurnal period (6:00 to 18:00); HRVdn, standard deviation of NN interval during 24 h; HRVn/d, ratio between standard deviation of NN interval during the nocturnal and preceding diurnal periods; ICP24, mean intracranial pressure during 24 h after the monitoring day of heart rate and blood pressure

    The Vitamin B12 Analog Cobinamide Is an Effective Antidote for Oral Cyanide Poisoning.

    No full text
    IntroductionCyanide is a major chemical threat, and cyanide ingestion carries a higher risk for a supra-lethal dose exposure compared to inhalation but provides an opportunity for effective treatment due to a longer treatment window and a gastrointestinal cyanide reservoir that could be neutralized prior to systemic absorption. We hypothesized that orally administered cobinamide may function as a high-binding affinity scavenger and that gastric alkalinization would reduce cyanide absorption and concurrently increase cobinamide binding, further enhancing antidote effectiveness.MethodsThirty New Zealand white rabbits were divided into five groups and were given a lethal dose of oral cyanide poisoning (50 mg). The survival time of animals was monitored with oral cyanide alone, oral cyanide with gastric alkalinization with oral sodium bicarbonate buffer (500 mg), and in combination with either aquohydroxocobinamide or dinitrocobinamide (250 mM). Red blood cell cyanide concentration, plasma cobinamide, and thiocyanate concentrations were measured from blood samples.ResultsIn cyanide ingested animals, oral sodium bicarbonate alone significantly prolonged survival time to 20.3 ± 8.6 min compared to 10.5 ± 4.3 min in saline-treated controls, but did not lead to overall survival. Aquohydroxocobinamide and dinitrocobinamide increased survival time to 64 ± 41 (p < 0.05) and 75 ± 16.4 min (p < 0.001), respectively. Compared to aquohydroxocobinamide, dinitrocobinamide showed greater systemic absorption and reduced blood pressure. Dinitrocobinamide also markedly increased the red blood cell cyanide concentration. Under all conditions, the plasma thiocyanate concentration gradually increased with time.ConclusionThis study demonstrates a promising new approach to treat high-dose cyanide ingestion, with gastric alkalinization alone and in combination with oral cobinamide for treating a supra-lethal dose of orally administered cyanide in rabbits
    corecore