509 research outputs found

    Escape Time Characterization of Pendular Fabry-Perot

    Full text link
    We show that an escape from the potential minimum of Fabry-Perot interferometers can be detected measuring the associated sudden change of reflectivity. We demonstrate that the loss of information that occurs retaining only the sequence of escapes, rather than the full trajectory, can be very mild and can lead to an effective method to reveal the noise intensity or the presence of a coherent signal

    Hemlock Woolly Adelgid (Hemiptera: Adelgidae) Management in Forest, Landscape, and Nursery Production

    Get PDF
    Hemlock woolly adelgid, Adelges tsugae (Annand) (Hemiptera: Adelgidae), has caused significant damage to both eastern [Tsuga canadensis (L.) Carrière] and Carolina hemlock (Tsuga caroliniana Englemann) (Pinales: Pinaceae) since it was first reported in the eastern United States. This adelgid is particularly damaging to these hemlock species due to a lack of co-evolved plant defenses and natural enemies able to suppress hemlock woolly adelgid populations. Management of hemlock woolly adelgid relies heavily on insecticides to prevent death of vulnerable trees. Biological control programs have released natural enemies of hemlock woolly adelgid to aid in control at the landscape level. Quarantine restrictions on hemlock are in place in some regions of the United States and Canada. These quarantines impact sales and shipment of hemlock trees from nurseries as well as other hemlock products. A review of insect biology, description of life stages, damage, management options, and quarantine restrictions for hemlock woolly adelgid is presented

    Effects of Color Attributes on Trap Capture Rates of Chrysobothris femorata (Coleoptera: Buprestidae) and Related Species

    Get PDF
    Chrysobothris spp. (Coleoptera: Buprestidae) and other closely related buprestids are common pests of fruit, shade, and nut trees in the United States. Many Chrysobothris spp., including Chrysobothris femorata, are polyphagous herbivores. Their wide host range leads to the destruction of numerous tree species in nurseries and orchards. Although problems caused by Chrysobothris are well known, there are no reliable monitoring methods to estimate local populations before substantial damage occurs. Other buprestid populations have been effectively estimated using colored sticky traps to capture beetles. However, the attraction of Chrysobothris to specific color attributes has not been directly assessed. A multi-color trapping system was utilized to determine color attraction of Chrysobothris spp. Specific color attributes (lightness [L*], red to green [a*], blue to yellow [b*], chroma [C*], hue [h*], and peak reflectance [PR]) were then evaluated to determine beetle responses. In initial experiments with mostly primary colors, Chrysobothris were most attracted to traps with red coloration. Thus, additional experiments were performed using a range of trap colors with red reflectance values. Among these red reflectance colors, it was determined that the violet range of the electromagnetic spectrum had greater attractance to Chrysobothris. Additionally, Chrysobothris attraction correlated with hue and b*, suggesting a preference for traps with hues between red to blue. However, males and females of some Chrysobothris species showed differentiated responses. These findings provide information on visual stimulants that can be used in Chrysobothris trapping and management. Furthermore, this information can be used in conjunction with ecological theory to understand host-location methods of Chrysobothris

    GW170104: Observation of a 50-Solar-Mass Binary Black Hole Coalescence at Redshift 0.2

    Get PDF
    We describe the observation of GW170104, a gravitational-wave signal produced by the coalescence of a pair of stellar-mass black holes. The signal was measured on January 4, 2017 at 10: 11: 58.6 UTC by the twin advanced detectors of the Laser Interferometer Gravitational-Wave Observatory during their second observing run, with a network signal-to-noise ratio of 13 and a false alarm rate less than 1 in 70 000 years. The inferred component black hole masses are 31.2(-6.0)(+8.4) M-circle dot and 19.4(-5.9)(+5.3)M(circle dot) (at the 90% credible level). The black hole spins are best constrained through measurement of the effective inspiral spin parameter, a mass-weighted combination of the spin components perpendicular to the orbital plane, chi(eff) = -0.12(-0.30)(+0.21) . This result implies that spin configurations with both component spins positively aligned with the orbital angular momentum are disfavored. The source luminosity distance is 880(-390)(+450) Mpc corresponding to a redshift of z = 0.18(-0.07)(+0.08) . We constrain the magnitude of modifications to the gravitational-wave dispersion relation and perform null tests of general relativity. Assuming that gravitons are dispersed in vacuum like massive particles, we bound the graviton mass to m(g) \u3c= 7.7 x 10(-23) eV/c(2). In all cases, we find that GW170104 is consistent with general relativity

    Prospects for observing and localizing gravitational-wave transients with Advanced LIGO, Advanced Virgo and KAGRA

    Get PDF
    We present possible observing scenarios for the Advanced LIGO, Advanced Virgo and KAGRA gravitational-wave detectors over the next decade, with the intention of providing information to the astronomy community to facilitate planning for multi-messenger astronomy with gravitational waves. We estimate the sensitivity of the network to transient gravitational-wave signals, and study the capability of the network to determine the sky location of the source. We report our findings for gravitational-wave transients, with particular focus on gravitational-wave signals from the inspiral of binary neutron star systems, which are the most promising targets for multi-messenger astronomy. The ability to localize the sources of the detected signals depends on the geographical distribution of the detectors and their relative sensitivity, and 90% credible regions can be as large as thousands of square degrees when only two sensitive detectors are operational. Determining the sky position of a significant fraction of detected signals to areas of 5-20 deg(2) requires at least three detectors of sensitivity within a factor of similar to 2 of each other and with a broad frequency bandwidth. When all detectors, including KAGRA and the third LIGO detector in India, reach design sensitivity, a significant fraction of gravitational-wave signals will be localized to a few square degrees by gravitational-wave observations alone

    Apolipoprotein B gene polymorphisms in patients from Serbia with ischemic cerebrovascular disease

    Get PDF
    The plasma concentration of apoB has recently been reported to be the best lipid predictor of coronary heart disease. The possible associations of genetic markers in the apolipoprotein B gene (XbaI, EcoRI, MspI, Ins/Del, and 4311 A/G polymorphisms) were evaluated in patients with ischemic cerebrovascular disease (ICVD) and controls of equivalent BMI. The odds ratio for ICVD in the X+X+ genotype was 2.22, 95% CI 1.24-3.96 (P<0.05), while that for ICVD in the Ins/Ins genotype was 2.82, 95% CI 1.57-5.06 (P<0.05). The patients had significantly higher frequency of the 4311A allele compared to the controls (P<0.01). Our results support the assumption that apoB gene polymorphisms may contribute to the extent of cerebrovascular disease risk

    Swift follow-up observations of candidate gravitational-wave transient events

    Get PDF
    We present the first multi-wavelength follow-up observations of two candidate gravitational-wave (GW) transient events recorded by LIGO and Virgo in their 2009-2010 science run. The events were selected with low latency by the network of GW detectors (within less than 10 minutes) and their candidate sky locations were observed by the Swift observatory (within 12 hr). Image transient detection was used to analyze the collected electromagnetic data, which were found to be consistent with background. Off-line analysis of the GW data alone has also established that the selected GW events show no evidence of an astrophysical origin; one of them is consistent with background and the other one was a test, part of a \ blind injection challenge.\ With this work we demonstrate the feasibility of rapid follow-ups of GW transients and establish the sensitivity improvement joint electromagnetic and GW observations could bring. This is a first step toward an electromagnetic follow-up program in the regime of routine detections with the advanced GW instruments expected within this decade. In that regime, multi-wavelength observations will play a significant role in completing the astrophysical identification of GW sources. We present the methods and results from this first combined analysis and discuss its implications in terms of sensitivity for the present and future instruments. © 2012. The American Astronomical Society. All rights reserved
    corecore