20 research outputs found

    AVONET: morphological, ecological and geographical data for all birds

    Get PDF
    Functional traits offer a rich quantitative framework for developing and testing theories in evolutionary biology, ecology and ecosystem science. However, the potential of functional traits to drive theoretical advances and refine models of global change can only be fully realised when species-level information is complete. Here we present the AVONET dataset containing comprehensive functional trait data for all birds, including six ecological variables, 11 continuous morphological traits, and information on range size and location. Raw morphological measurements are presented from 90,020 individuals of 11,009 extant bird species sampled from 181 countries. These data are also summarised as species averages in three taxonomic formats, allowing integration with a global phylogeny, geographical range maps, IUCN Red List data and the eBird citizen science database. The AVONET dataset provides the most detailed picture of continuous trait variation for any major radiation of organisms, offering a global template for testing hypotheses and exploring the evolutionary origins, structure and functioning of biodiversity.Additional co-authors: Samuel E. I. Jones, Claire Vincent, Anna G. Phillips, Nicola M. Marples, Flavia A. Montaño-Centellas, Victor Leandro-Silva, Santiago Claramunt, Bianca Darski, Benjamin G. Freeman, Tom P. Bregman, Christopher R. Cooney, Emma C. Hughes, Elliot J. R. Capp, Zoë K. Varley, Nicholas R. Friedman, Heiko Korntheuer, Andrea Corrales-Vargas, Christopher H. Trisos, Brian C. Weeks, Dagmar M. Hanz, Till Töpfer, Gustavo A. Bravo, Vladimír Remeƥ, Larissa Nowak, Lincoln S. Carneiro, Amilkar J. Moncada R., Beata Matysiokovå, Daniel T. Baldassarre, Alejandra Martínez-Salinas, Jared D. Wolfe, Philip M. Chapman, Benjamin G. Daly, Marjorie C. Sorensen, Alexander Neu, Michael A. Ford, Luis Fabio Silveira, David J. Kelly, Nathaniel N. D. Annorbah, Henry S. Pollock, Ada M. Grabowska-Zhang, Jay P. McEntee, Juan Carlos T. Gonzalez, Camila G. Meneses, Marcia C. Muñoz, Luke L. Powell, Gabriel A. Jamie, Thomas J. Matthews, Oscar Johnson, Guilherme R. R. Brito, Kristof Zyskowski, Ross Crates, Michael G. Harvey, Maura Jurado Zevallos, Peter A. Hosner, James M. Maley, F. Gary Stiles, Hevana S. Lima, Kaiya L. Provost, Moses Chibesa, Mmatjie Mashao, Jeffrey T. Howard, Edson Mlamba, Marcus A. H. Chua, Bicheng Li, M. Isabel Gómez, Natalia C. García, Martin PÀckert, JérÎme Fuchs, Jarome R. Ali, Elizabeth P. Derryberry, Monica L. Carlson, Rolly C. Urriza, Kristin E. Brzeski, Dewi M. Prawiradilaga, Matt J. Rayner, Eliot T. Miller, Rauri C. K. Bowie, René-Marie Lafontaine, R. Paul Scofield, Yingqiang Lou, Lankani Somarathna, Denis Lepage, Marshall Illif, Eike Lena Neuschulz, Mathias Templin, D. Matthias Dehling, Jacob C. Cooper, Olivier S. G. Pauwels, Kangkuso Analuddin, Jon FjeldsÄ, Nathalie Seddon, Paul R. Sweet, Fabrice A. J. DeClerck, Luciano N. Naka, Jeffrey D. Brawn, Alexandre Aleixo, Katrin Böhning-Gaese, Carsten Rahbek, Susanne A. Fritz, Gavin H. Thomas, Matthias Schleunin

    AVONET: Morphological, ecological and geographical data for all birds

    Get PDF
    Functional traits offer a rich quantitative framework for developing and testing theories in evolutionary biology, ecology and ecosystem science. However, the potential of functional traits to drive theoretical advances and refine models of global change can only be fully realised when species-level information is complete. Here we present the AVONET dataset containing comprehensive functional trait data for all birds, including six ecological variables, 11 continuous morphological traits, and information on range size and location. Raw morphological measurements are presented from 90,020 individuals of 11,009 extant bird species sampled from 181 countries. These data are also summarised as species averages in three taxonomic formats, allowing integration with a global phylogeny, geographical range maps, IUCN Red List data and the eBird citizen science database. The AVONET dataset provides the most detailed picture of continuous trait variation for any major radiation of organisms, offering a global template for testing hypotheses and exploring the evolutionary origins, structure and functioning of biodiversity.Fil: Tobias, Joseph A.. Imperial College London; Reino Unido. University of Oxford; Reino UnidoFil: Sheard, Catherine. University of Oxford; Reino Unido. University of Bristol; Reino UnidoFil: Pigot, Alex L.. University of Oxford; Reino Unido. University College London; Estados UnidosFil: Devenish, Adam J. M.. Imperial College London; Reino UnidoFil: Yang, Jingyi. Imperial College London; Reino UnidoFil: Sayol, Ferran. University College London; Estados UnidosFil: Neate Clegg, Montague H. C.. University of Oxford; Reino Unido. University of Utah; Estados UnidosFil: Alioravainen, Nico. University of Oxford; Reino Unido. Natural Resources Institute Finland; FinlandiaFil: Weeks, Thomas L.. Imperial College London; Reino Unido. Natural History Museum; Reino UnidoFil: Barber, Robert A.. Imperial College London; Reino UnidoFil: Walkden, Patrick A.. Imperial College London; Reino Unido. Natural History Museum; Reino UnidoFil: MacGregor, Hannah E. A.. University of Oxford; Reino Unido. University of Bristol; Reino UnidoFil: Jones, Samuel E. I.. University of Oxford; Reino Unido. University of London; Reino UnidoFil: Vincent, Claire. Organización de Las Naciones Unidas; ArgentinaFil: Phillips, Anna G.. Senckenberg Biodiversity And Climate Research Centre; AlemaniaFil: Marples, Nicola M.. Trinity College; Estados UnidosFil: Montaño Centellas, Flavia A.. Universidad Mayor de San Andrés; Bolivia. University of Florida; Estados UnidosFil: Leandro Silva, Victor. Universidade Federal de Pernambuco; BrasilFil: Claramunt, Santiago. University of Toronto; Canadå. Royal Ontario Museum; CanadåFil: Darski, Bianca. Universidade Federal do Rio Grande do Sul; BrasilFil: Freeman, Benjamin G.. University of British Columbia; CanadåFil: Bregman, Tom P.. University of Oxford; Reino Unido. Future-Fit Foundation; Reino UnidoFil: Cooney, Christopher R.. University Of Sheffield; Reino UnidoFil: Hughes, Emma C.. University Of Sheffield; Reino UnidoFil: Capp, Elliot J. R.. University Of Sheffield; Reino UnidoFil: Varley, Zoë K.. University Of Sheffield; Reino Unido. Natural History Museum; Reino UnidoFil: Friedman, Nicholas R.. Okinawa Institute of Science and Technology Graduate University; JapónFil: Korntheuer, Heiko. Johannes Gutenberg Universitat Mainz; AlemaniaFil: Corrales Vargas, Andrea. Universidad Nacional de Costa Rica; Costa RicaFil: García, Natalia Cristina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Museo Argentino de Ciencias Naturales "Bernardino Rivadavia"; Argentin

    Crop Updates 2002 - Geraldton

    Get PDF
    This session covers twenty seven papers from different authors: 1. Taking the Why out of Wyalkatchem – the new widely adapted wheat variety, Steve Penny Jr, Department of Agriculture 2. Future wheat varieties, Robin Wilson, Iain Barclay,Robyn McLean, Robert Loughman, Jenny Garlinge, Bill Lambe, Neil Venn and Peter Clarke Department of Agriculture 3. Maximising wheat variety performance through agronomic management, Wal Anderson, Raffaele Del Cima, James Bee, Darshan Sharma, Sheena Lyon, Melaine Kupsch, Mohammad Amjad, Pam Burgess, Veronika Reck, Brenda Shackley, Ray Tugwell, Bindi Webb and Steve Penny Jr Department of Agriculture 4. Cereal rust update 2002 – a new stem rust on Camm wheat, Robert Loughman1and Robert Park2 1Department of Agriculture, 2University of Sydney 5. Influence of nutrition and environmental factors on seed vigour in wheat, Darshan Sharma, Wal Anderson and Daya Patabendige, Department of Agriculture 6. Cereal aphids and direct feeding damage to cereals, Phil Michael, Department of Agriculture 7. A decision support system for control of aphids and BYDV in cereal crops, Debbie Thackray, Jenny Hawkes and Roger Jones, Department of Agriculture and Centre for Legumes in Mediterranean Agriculture 8. Summary of 2001 weather and seasonal prospects for 2002, David Stephens, Department of Agriculture 9. Towards a management package for grain protein in lupins, Bob French, Senior Research Officer, Department of Agriculture 10. Lupin genotypes respond differently to potash, Bob French and Laurie Wahlsten, Senior Research Officer and Technical Officer, Department of Agriculture 11. Time of harvest for improved seed yield of pulses, G. Riethmuller and B. French, Department of Agriculture 12. Comparing the phosphorus requirement of field pea and wheat, M. Bolland and P. White, Department of Agriculture Western Australia 13. Field pea variety evaluation, T. Khan, Department of Agriculture Western Australia 14. Diamondback moth (DBM) in canola, Kevin Walden, Department of Agriculture 15. WA blackleg resistance ratings on canola varieties for 2002, Ravjit Khangura, Martin J. Barbetti and Graham Walton, Department of Agriculture 16. The effect of single or multiple spray treatments on the control of Diamondback moth (Plutella xylostella) and yield of canola at Wongan Hills, Françoise Berlandier, Paul Carmody and Christiaan Valentine, Department of Agriculture 17. Perennial pastures in annual cropping systems: Lucerne and beyond, Roy Latta and Keith Devenish, Department of Agriculture 18. Nutrition in 2002: Decisions to be made as a result of last season, Bill Bowden,Department of Agriculture 19. Profitability of deep banding lime, Michael O\u27Connell, Chris Gazey and David Gartner, Department of Agriculture 20. Economic comparisons of farming systems for the medium rainfall northern sandplain, Caroline Peek and David Rogers, Department of Agriculture 21. The use of Twist Fungus as a biosecurity measure against Annual Ryegrass Toxicity (ARGT), Greg Shea, GrainGuard Coordinator and George Yan, Biological and Resource Technology 22. Major outcomes from IWM demonstration sites, Alexandra Douglas, Department of Agriculture 23. Understanding the weed seed bank life of important agricultural weeds, Sally Peltzer and Paul Matson, Department of Agriculture 24. Seeding rate, row spacing and herbicides for weed control, David Minkey, Department of Agriculture 25. Improving weed control in grazed pastures using legumes with low palatability, Clinton Revell and Giles Glasson, Department of Agriculture, Dean Thomas, Faculty of Agriculture, University of Western Australia 26. Group F resistant wild radish: What’s new? Aik Cheam1, Siew Lee1and Mike Clarke2, 1Department of Agriculture WA, 2Aventis Crop Science 27. Knockdown herbicides do not reliably kill small grass weeds, Peter Newman and Glenn Adam, Department of Agricultur

    The CCP4 suite : integrative software for macromolecular crystallography

    Get PDF
    The Collaborative Computational Project No. 4 (CCP4) is a UK-led international collective with a mission to develop, test, distribute and promote software for macromolecular crystallography. The CCP4 suite is a multiplatform collection of programs brought together by familiar execution routines, a set of common libraries and graphical interfaces. The CCP4 suite has experienced several considerable changes since its last reference article, involving new infrastructure, original programs and graphical interfaces. This article, which is intended as a general literature citation for the use of the CCP4 software suite in structure determination, will guide the reader through such transformations, offering a general overview of the new features and outlining future developments. As such, it aims to highlight the individual programs that comprise the suite and to provide the latest references to them for perusal by crystallographers around the world

    AVONET: morphological, ecological and geographical data for all birds

    Get PDF
    Functional traits offer a rich quantitative framework for developing and testing theories in evolutionary biology, ecology and ecosystem science. However, the potential of functional traits to drive theoretical advances and refine models of global change can only be fully realised when species‐level information is complete. Here we present the AVONET dataset containing comprehensive functional trait data for all birds, including six ecological variables, 11 continuous morphological traits, and information on range size and location. Raw morphological measurements are presented from 90,020 individuals of 11,009 extant bird species sampled from 181 countries. These data are also summarised as species averages in three taxonomic formats, allowing integration with a global phylogeny, geographical range maps, IUCN Red List data and the eBird citizen science database. The AVONET dataset provides the most detailed picture of continuous trait variation for any major radiation of organisms, offering a global template for testing hypotheses and exploring the evolutionary origins, structure and functioning of biodiversity

    Rethinking North–South Research Partnerships Amidst Global Uncertainties: Leveraging Lessons Learned from UK GCRF Projects during COVID-19

    Get PDF
    International research and development projects (or grand challenge projects) consist of multicultural, multi-country, multi-sectoral, and multi-stakeholder initiatives aimed at poverty reduction. They are usually conceived as partnerships between actors in the global north–south. The COVID-19 pandemic was a major unexpected disruption to ongoing projects and challenged their already complex management. The aim of this paper is to present evidence on how international development projects were impacted by COVID-19 with a particular focus on the relationship between research institutions in the north and south. We conducted a mixed-methods research study, combining a reflective exercise with the co-author team and a survey with principal investigators, project managers, and capacity development leads drawn from 31 Global Challenges Research Fund (GCRF) projects funded through the UK government’s Official Development Assistance (ODA) and focused on social–ecological system research. The survey contained closed- and open-ended questions in order to (i) demonstrate how those involved in managing projects adapted to risks, including both threats and opportunities, presented by the COVID-19 pandemic, and (ii) consider the implications for tailoring adaptive management approaches in international research projects amidst uncertainties, with a special focus on enhancing equities in global north–south partnerships. The paper offers the following recommendations on designing, planning, and implementing international research and development projects: (i) devolve project management in order to enhance project resilience and improve north–south equities; (ii) allocate dedicated resources to enable equitable north–south research partnerships; (iii) rely more on hybrid and agile approaches for managing a project’s life cycle; and (iv) improve resource flexibility, transparency, and communication through enhanced funder–implementer collaboration

    A comparison of atmospheric dispersion model predictions with observations of SO2 and sulphate aerosol from volcanic eruptions

    No full text
    The UK Met Office's Numerical Atmospheric-dispersion Modeling Environment (NAME) is used both operationally and for research investigations. It has previously been used to model volcanic ash at the London Volcanic Ash Advisory Centre (VAAC), including that from the eruptions in Iceland of Eyjafjallajökull in 2010 and Grímsvtn in 2011. In this paper, the ability of NAME to model the release and dispersion of volcanic SO2, the chemical processes leading to the production of sulphate aerosol, and the subsequent dispersion of sulphate aerosol, has been investigated. Sensitivity tests were carried out to investigate the suitability of the NAME chemistry scheme for use in both the troposphere and the stratosphere. The eruptions of Sarychev in 2009, Kasatochi in 2008 and Eyjafjallajökull in 2010 were simulated and results for SO2 column density and sulphate aerosol optical depth (AOD) were compared with satellite retrievals. NAME results compare favorably with available observations in terms of both geographical distribution and magnitude for all three cases. The NAME modeled values of SO2 show a correlation of 0.8 with the corresponding observations for Sarychev. Ninety percent of modeled values of northern hemisphere averaged sulphate AOD are within a factor of 2 of those observed for Kasatochi and 71% are within a factor of 2 of those observed for Sarychev. Although significant uncertainties are present in both the model and observations, this work demonstrates that NAME's current chemistry scheme shows promise as a tool for modeling SO2 and sulphate from volcanoes. © 2012 by the American Geophysical Union.SCOPUS: ar.jinfo:eu-repo/semantics/publishe
    corecore