6,876 research outputs found

    Redescription of Anaschisma (Temnospondyli: Metoposauridae) from the Late Triassic of Wyoming and the phylogeny of the Metoposauridae

    Get PDF
    Metoposaurids are non-marine temnospondyls that are among the most common constituents of Late Triassic deposits, but despite their abundance, the evolutionary relationships of the group are poorly resolved and have not been fully addressed with modern phylogenetic methods. The genus Anaschisma is one of a number of poorly resolved metoposaurid taxa and was erected to describe two species from the Popo Agie Formation (Carnian) in Wyoming: Anaschisma browni and Anaschisma brachygnatha. Since being named, the genus has been repeatedly synonymized and separated with other taxa in the context of broader revisions of the Metoposauridae. At present, Anaschisma is considered to be an indeterminate metoposaurid. Extensive descriptive work of metoposaurids since the erection of Anaschisma in 1905 and the last taxonomic review of the clade in 1993, including the naming of several new taxa and the reappraisal of several others, has generated a sufficiently detailed database through which to re-evaluate the taxonomy of the Metoposauridae as part of the analysis of phylogenetic relationships of Anaschisma. Here we reappraise and redescribe the holotypes of A. browni and A. brachygnatha to determine their taxonomic status and relationships in the context of an updated and revised metoposaurid phylogenetic framework. Anaschisma browni and Anaschisma brachygnatha are synonymized under the former species, as all previously listed diagnostic differences are compatible with intraspecific variation. Additionally, the well-known Koskinonodon perfectus is found to be a junior synonym of Anaschisma browni, which takes taxonomic precedence given its earlier description. Poor phylogenetic resolution of the Metoposauridae is likely the product of marked morphological conservatism within the clade and limited character sampling, although some patterns of regional clustering are apparent from the analysis

    Four-point Green functions in the Schwinger Model

    Get PDF
    The evaluation of the 4-point Green functions in the 1+1 Schwinger model is presented both in momentum and coordinate space representations. The crucial role in our calculations play two Ward identities: i) the standard one, and ii) the chiral one. We demonstrate how the infinite set of Dyson-Schwinger equations is simplified, and is so reduced, that a given n-point Green function is expressed only through itself and lower ones. For the 4-point Green function, with two bosonic and two fermionic external `legs', a compact solution is given both in momentum and coordinate space representations. For the 4-fermion Green function a selfconsistent equation is written down in the momentum representation and a concrete solution is given in the coordinate space. This exact solution is further analyzed and we show that it contains a pole corresponding to the Schwinger boson. All detailed considerations given for various 4-point Green functions are easily generizable to higher functions.Comment: In Revtex, 12 pages + 2 PostScript figure

    Striation and convection in penumbral filaments

    Get PDF
    Observations with the 1-m Swedish Solar Telescope of the flows seen in penumbral filaments are presented. Time sequences of bright filaments show overturning motions strikingly similar to those seen along the walls of small isolated structures in the active regions. The filaments show outward propagating striations with inclination angles suggesting that they are aligned with the local magnetic field. We interpret it as the equivalent of the striations seen in the walls of small isolated magnetic structures. Their origin is then a corrugation of the boundary between an overturning convective flow inside the filament and the magnetic field wrapping around it. The outward propagation is a combination of a pattern motion due to the downflow observed along the sides of bright filaments, and the Evershed flow. The observed short wavelength of the striation argues against the existence of a dynamically significant horizontal field inside the bright filaments. Its intensity contrast is explained by the same physical effect that causes the dark cores of filaments, light bridges and `canals'. In this way striation represents an important clue to the physics of penumbral structure and its relation with other magnetic structures on the solar surface. We put this in perspective with results from the recent 3-D radiative hydrodynamic simulations.Comment: Accepted for publication in A&

    Outflows and Massive Stars in the protocluster IRAS 05358+3543

    Full text link
    We present new near-IR H2, CO J=2-1, and CO J = 3-2 observations to study outflows in the massive star forming region IRAS 05358+3543. The Canada-France-Hawaii Telescope H2 images and James Clerk Maxwell Telescope CO data cubes of the IRAS 05358 region reveal several new outflows, most of which emerge from the dense cluster of sub-mm cores associated with the Sh 2-233IR NE cluster to the northeast of IRAS 05358. We used Apache Point Observatory (APO) JHK spectra to determine line of sight velocities of the outflowing material. Analysis of archival VLA cm continuum data and previously published VLBI observations reveal a massive star binary as a probable source of one or two of the outflows. We have identified probable sources for 6 outflows and candidate counterflows for 7 out of a total of 11 seen to be originating from the IRAS 05358 clusters. We classify the clumps within Sh 2-233IR NE as an early protocluster and Sh 2-233IR SW as a young cluster, and conclude that the outflow energy injection rate approximately matches the turbulent decay rate in Sh 2-233IR NE.Comment: 15 figures, 42 pages, accepted for publication in the Astrophysical Journal. Full size figures are included at http://casa.colorado.edu/~ginsbura/iras05358.htm. Data can be accessed from figshare: http://figshare.com/articles/IRAS_05358_3543_Data_Cubes/80631

    Structural Analysis Of Neutralizing Epitopes Of The SARS-CoV-2 Spike To Guide Therapy And Vaccine Design Strategies

    Get PDF
    Coronavirus research has gained tremendous attention because of the COVID-19 pandemic, caused by the novel severe acute respiratory syndrome coronavirus (nCoV or SARS-CoV-2). In this review, we highlight recent studies that provide atomic-resolution structural details important for the development of monoclonal antibodies (mAbs) that can be used therapeutically and prophylactically and for vaccines against SARS-CoV-2. Structural studies with SARS-CoV-2 neutralizing mAbs have revealed a diverse set of binding modes on the spike’s receptor-binding domain and N-terminal domain and highlight alternative targets on the spike. We consider this structural work together with mAb effects in vivo to suggest correlations between structure and clinical applications. We also place mAbs against severe acute respiratory syndrome (SARS) and Middle East respiratory syndrome (MERS) coronaviruses in the context of the SARS-CoV-2 spike to suggest features that may be desirable to design mAbs or vaccines capable of conferring broad protection

    Localized D-dimensional global k-defects

    Full text link
    We explicitly demonstrate the existence of static global defect solutions of arbitrary dimensionality whose energy does not diverge at spatial infinity, by considering maximally symmetric solutions described by an action with non-standard kinetic terms in a D+1 dimensional Minkowski space-time. We analytically determine the defect profile both at small and large distances from the defect centre. We verify the stability of such solutions and discuss possible implications of our findings, in particular for dark matter and charge fractionalization in graphene.Comment: 6 pages, published versio

    Transcript-indexed ATAC-seq for precision immune profiling.

    Get PDF
    T cells create vast amounts of diversity in the genes that encode their T cell receptors (TCRs), which enables individual clones to recognize specific peptide-major histocompatibility complex (MHC) ligands. Here we combined sequencing of the TCR-encoding genes with assay for transposase-accessible chromatin with sequencing (ATAC-seq) analysis at the single-cell level to provide information on the TCR specificity and epigenomic state of individual T cells. By using this approach, termed transcript-indexed ATAC-seq (T-ATAC-seq), we identified epigenomic signatures in immortalized leukemic T cells, primary human T cells from healthy volunteers and primary leukemic T cells from patient samples. In peripheral blood CD4+ T cells from healthy individuals, we identified cis and trans regulators of naive and memory T cell states and found substantial heterogeneity in surface-marker-defined T cell populations. In patients with a leukemic form of cutaneous T cell lymphoma, T-ATAC-seq enabled identification of leukemic and nonleukemic regulatory pathways in T cells from the same individual by allowing separation of the signals that arose from the malignant clone from the background T cell noise. Thus, T-ATAC-seq is a new tool that enables analysis of epigenomic landscapes in clonal T cells and should be valuable for studies of T cell malignancy, immunity and immunotherapy
    corecore