Observations with the 1-m Swedish Solar Telescope of the flows seen in
penumbral filaments are presented. Time sequences of bright filaments show
overturning motions strikingly similar to those seen along the walls of small
isolated structures in the active regions. The filaments show outward
propagating striations with inclination angles suggesting that they are aligned
with the local magnetic field. We interpret it as the equivalent of the
striations seen in the walls of small isolated magnetic structures. Their
origin is then a corrugation of the boundary between an overturning convective
flow inside the filament and the magnetic field wrapping around it. The outward
propagation is a combination of a pattern motion due to the downflow observed
along the sides of bright filaments, and the Evershed flow. The observed short
wavelength of the striation argues against the existence of a dynamically
significant horizontal field inside the bright filaments. Its intensity
contrast is explained by the same physical effect that causes the dark cores of
filaments, light bridges and `canals'. In this way striation represents an
important clue to the physics of penumbral structure and its relation with
other magnetic structures on the solar surface. We put this in perspective with
results from the recent 3-D radiative hydrodynamic simulations.Comment: Accepted for publication in A&