67 research outputs found

    In vivo MRI mapping of brain iron deposition across the adult lifespan

    Get PDF
    Disruption of iron homeostasis as a consequence of aging is thought to cause iron levels to increase, potentially promoting oxidative cellular damage. Therefore, understanding how this process evolves through the lifespan could offer insights into both the aging process and the development of aging-related neurodegenerative brain diseases. This work aimed to map, in vivo for the first time with an unbiased whole-brain approach, age-related iron changes using quantitative susceptibility mapping (QSM)—a new postprocessed MRI contrast mechanism. To this end, a full QSM standardization routine was devised and a cohort of N = 116 healthy adults (20–79 years of age) was studied. The whole-brain and ROI analyses confirmed that the propensity of brain cells to accumulate excessive iron as a function of aging largely depends on their exact anatomical location. Whereas only patchy signs of iron scavenging were observed in white matter, strong, bilateral, and confluent QSM–age associations were identified in several deep-brain nuclei—chiefly the striatum and midbrain—and across motor, premotor, posterior insular, superior prefrontal, and cerebellar cortices. The validity of QSM as a suitable in vivo imaging technique with which to monitor iron dysregulation in the human brain was demonstrated by confirming age-related increases in several subcortical nuclei that are known to accumulate iron with age. The study indicated that, in addition to these structures, there is a predilection for iron accumulation in the frontal lobes, which when combined with the subcortical findings, suggests that iron accumulation with age predominantly affects brain regions concerned with motor/output functions

    In vivo visualization of age-related differences in the locus coeruleus.

    Get PDF
    The locus coeruleus (LC), the major origin of noradrenergic modulation of the central nervous system, may play an important role in neuropsychiatric disorders including Parkinson's disease and Alzheimer's disease. The pattern of age-related change of the LC across the life span is unclear. We obtained normalized, mean LC signal intensity values, that is, contrast ratios (CRs), from magnetization transfer-weighted images to investigate the relationship between LC CR and age in cognitively normal healthy adults (N = 605, age range 18-88 years). Study participants were part of the Cambridge Centre for Ageing and Neuroscience-an open-access, population-based data set. We found a quadratic relationship between LC CR and age, the peak occurring around 60 years, with no differences between males and females. Subregional analyses revealed that age-related decline in LC CR was confined to the rostral portion of the LC. Older adults showed greater variance in overall LC CR than younger adults, and the functional and clinical implications of these observed age-related differences require further investigation. Visualization of the LC in this study may inform how future scanning parameters can be optimized, and provides insight into how LC integrity changes across the life span

    Brain-predicted age in Down syndrome is associated with beta amyloid deposition and cognitive decline

    Get PDF
    Individuals with Down Syndrome (DS) are more likely to experience earlier onset of multiple facets of physiological ageing. This includes brain atrophy, β-amyloid deposition, cognitive decline and Alzheimer’s Disease; factors indicative of brain ageing. Here we employed a machine learning approach, using structural neuroimaging data to predict age (i.e., brain-predicted age) in people with DS (N = 46) and typically developing controls (N = 30). Chronological age was then subtracted from brain-predicted age to generate a brain-predicted age difference (brain-PAD) score. DS participants also underwent [11C]-PiB positron emission tomography (PET) scans to index levels of cerebral β-amyloid deposition, and cognitive assessment. Mean brain-PAD in DS participants’ was +2.49 years, significantly greater than controls (p<0.001). The variability in brain-PAD was associated with the presence and the magnitude of PIB-binding and levels of cognitive performance. Our study indicates that DS is associated with premature structural brain ageing, and that age-related alterations in brain structure are associated with individual differences in the rate of β-amyloid deposition and cognitive impairment

    Brain Iron and Metabolic Abnormalities in C19orf12 Mutation Carriers: A 7.0 Tesla MRI Study in Mitochondrial Membrane Protein–Associated Neurodegeneration

    Get PDF
    Background Mitochondrial membrane protein‐associated neurodegeneration is an autosomal‐recessive disorder caused by C19orf12 mutations and characterized by iron deposits in the basal ganglia. Objectives The aim of this study was to quantify iron concentrations in deep gray matter structures using quantitative susceptibility mapping MRI and to characterize metabolic abnormalities in the pyramidal pathway using 1H MR spectroscopy in clinically manifesting membrane protein‐associated neurodegeneration patients and asymptomatic C19orf12 gene mutation heterozygous carriers. Methods We present data of 4 clinically affected membrane protein‐associated neurodegeneration patients (mean age: 21.0 ± 2.9 years) and 9 heterozygous gene mutation carriers (mean age: 50.4 ± 9.8 years), compared to age‐matched healthy controls. MRI assessments were performed on a 7.0 Tesla whole‐body system, consisting of whole‐brain gradient‐echo scans and short echo time, single‐volume MR spectroscopy in the white matter of the precentral/postcentral gyrus. Quantitative susceptibility mapping, a surrogate marker for iron concentration, was performed using a state‐of‐the‐art multiscale dipole inversion approach with focus on the globus pallidus, thalamus, putamen, caudate nucleus, and SN. Results and Conclusion In membrane protein‐associated neurodegeneration patients, magnetic susceptibilities were 2 to 3 times higher in the globus pallidus (P = 0.02) and SN (P = 0.02) compared to controls. In addition, significantly higher magnetic susceptibility was observed in the caudate nucleus (P = 0.02). Non‐manifesting heterozygous mutation carriers exhibited significantly increased magnetic susceptibility (relative to controls) in the putamen (P = 0.003) and caudate nucleus (P = 0.001), which may be an endophenotypic marker of genetic heterozygosity. MR spectroscopy revealed significantly increased levels of glutamate, taurine, and the combined concentration of glutamate and glutamine in membrane protein‐associated neurodegeneration, which may be a correlate of corticospinal pathway dysfunction frequently observed in membrane protein‐associated neurodegeneration patients

    A positron emission tomography study of nigro-striatal dopaminergic mechanisms underlying attention: implications for ADHD and its treatment.

    Get PDF
    Through the combined use of (18)F-fallypride positron emission tomography and magnetic resonance imaging this study examined the neural mechanisms underlying the attentional deficits associated with attention deficit/hyperactivity disorder and their potential reversal with a single therapeutic dose of methylphenidate. Sixteen adult patients with attention deficit/hyperactivity disorder and 16 matched healthy control subjects were positron emission tomography and magnetic resonance imaging scanned and tested on a computerized sustained attention task after oral methylphenidate (0.5 mg/kg) and placebo administration in a within-subject, double-blind, cross-over design. Although patients with attention deficit/hyperactivity disorder as a group showed significant attentional deficits and reduced grey matter volume in fronto-striato-cerebellar and limbic networks, they had equivalent D2/D3 receptor availability and equivalent increases in endogenous dopamine after methylphenidate treatment to that observed in healthy control subjects. However, poor attentional performers drawn from both the attention deficit/hyperactivity disorder and the control groups had significantly reduced left caudate dopamine activity. Methylphenidate significantly increased dopamine levels in all nigro-striatal regions, thereby normalizing dopamine levels in the left caudate in low performers. Behaviourally, methylphenidate improved sustained attention in a baseline performance-dependent manner, irrespective of diagnosis. This finding was accompanied by an equally performance-dependent effect of the drug on dopamine release in the midbrain, whereby low performers showed reduced dopamine release in this region. Collectively, these findings support a dimensional model of attentional deficits and underlying nigro-striatal dopaminergic mechanisms of attention deficit/hyperactivity disorder that extends into the healthy population. Moreover, they confer midbrain dopamine autoreceptors a hitherto neglected role in the therapeutic effects of oral methylphenidate in attention deficit/hyperactivity disorder. The absence of significant case-control differences in D2/D3 receptor availability (despite the observed relationships between dopamine activity and attention) suggests that dopamine dysregulation per se is unlikely to be the primary cause underlying attention deficit/hyperactivity disorder pathology in adults. This conclusion is reinforced by evidence of neuroanatomical changes in the same set of patients with attention deficit/hyperactivity disorder

    European Ultrahigh-Field Imaging Network for Neurodegenerative Diseases (EUFIND).

    Get PDF
    INTRODUCTION: The goal of European Ultrahigh-Field Imaging Network in Neurodegenerative Diseases (EUFIND) is to identify opportunities and challenges of 7 Tesla (7T) MRI for clinical and research applications in neurodegeneration. EUFIND comprises 22 European and one US site, including over 50 MRI and dementia experts as well as neuroscientists. METHODS: EUFIND combined consensus workshops and data sharing for multisite analysis, focusing on 7 core topics: clinical applications/clinical research, highest resolution anatomy, functional imaging, vascular systems/vascular pathology, iron mapping and neuropathology detection, spectroscopy, and quality assurance. Across these topics, EUFIND considered standard operating procedures, safety, and multivendor harmonization. RESULTS: The clinical and research opportunities and challenges of 7T MRI in each subtopic are set out as a roadmap. Specific MRI sequences for each subtopic were implemented in a pilot study presented in this report. Results show that a large multisite 7T imaging network with highly advanced and harmonized imaging sequences is feasible and may enable future multicentre ultrahigh-field MRI studies and clinical trials. DISCUSSION: The EUFIND network can be a major driver for advancing clinical neuroimaging research using 7T and for identifying use-cases for clinical applications in neurodegeneration

    The pattern of amyloid accumulation in the brains of adults with Down syndrome.

    Get PDF
    INTRODUCTION: Adults with Down syndrome (DS) invariably develop Alzheimer's disease (AD) neuropathology. Understanding amyloid deposition in DS can yield crucial information about disease pathogenesis. METHODS: Forty-nine adults with DS aged 25-65 underwent positron emission tomography with Pittsburgh compound-B (PIB). Regional PIB binding was assessed with respect to age, clinical, and cognitive status. RESULTS: Abnormal PIB binding became evident from 39 years, first in striatum followed by rostral prefrontal-cingulo-parietal regions, then caudal frontal, rostral temporal, primary sensorimotor and occipital, and finally parahippocampal cortex, thalamus, and amygdala. PIB binding was related to age, diagnostic status, and cognitive function. DISCUSSION: PIB binding in DS, first appearing in striatum, began around age 40 and was strongly associated with dementia and cognitive decline. The absence of a substantial time lag between amyloid accumulation and cognitive decline contrasts to sporadic/familial AD and suggests this population's suitability for an amyloid primary prevention trial.This research was generously supported by a grant from the Medical Research Council (grant ID number: 98480). Additional support came from the NIHR Cambridge Biomedical Research Centre, the NIHR Collaborations in Leadership for Applied Health Research and Care (CLAHRC) for the East of England, the NIHR Cambridge Dementia Biomedical Research Unit, The Down Syndrome Association, and The Health Foundation.This is the final version of the article. It first appeared from Elsevier via http://dx.doi.org/10.1016/j.jalz.2015.07.49

    Social cognitive deficits and their neural correlates in progressive supranuclear palsy

    Get PDF
    Although progressive supranuclear palsy is defined by its akinetic rigidity, vertical supranuclear gaze palsy and falls, cognitive impairments are an important determinant of patients’ and carers’ quality of life. Here, we investigate whether there is a broad deficit of modality-independent social cognition in progressive supranuclear palsy and explore the neural correlates for these. We recruited 23 patients with progressive supranuclear palsy (using clinical diagnostic criteria, nine with subsequent pathological confirmation) and 22 age- and education-matched controls. Participants performed an auditory (voice) emotion recognition test, and a visual and auditory theory of mind test. Twenty-two patients and 20 controls underwent structural magnetic resonance imaging to analyse neural correlates of social cognition deficits using voxel-based morphometry. Patients were impaired on the voice emotion recognition and theory of mind tests but not auditory and visual control conditions. Grey matter atrophy in patients correlated with both voice emotion recognition and theory of mind deficits in the right inferior frontal gyrus, a region associated with prosodic auditory emotion recognition. Theory of mind deficits also correlated with atrophy of the anterior rostral medial frontal cortex, a region associated with theory of mind in health. We conclude that patients with progressive supranuclear palsy have a multimodal deficit in social cognition. This deficit is due, in part, to progressive atrophy in a network of frontal cortical regions linked to the integration of socially relevant stimuli and interpretation of their social meaning. This impairment of social cognition is important to consider for those managing and caring for patients with progressive supranuclear palsy

    Locus coeruleus imaging as a biomarker for noradrenergic dysfunction in neurodegenerative diseases.

    Get PDF
    Pathological alterations to the locus coeruleus, the major source of noradrenaline in the brain, are histologically evident in early stages of neurodegenerative diseases. Novel MRI approaches now provide an opportunity to quantify structural features of the locus coeruleus in vivo during disease progression. In combination with neuropathological biomarkers, in vivo locus coeruleus imaging could help to understand the contribution of locus coeruleus neurodegeneration to clinical and pathological manifestations in Alzheimer's disease, atypical neurodegenerative dementias and Parkinson's disease. Moreover, as the functional sensitivity of the noradrenergic system is likely to change with disease progression, in vivo measures of locus coeruleus integrity could provide new pathophysiological insights into cognitive and behavioural symptoms. Locus coeruleus imaging also holds the promise to stratify patients into clinical trials according to noradrenergic dysfunction. In this article, we present a consensus on how non-invasive in vivo assessment of locus coeruleus integrity can be used for clinical research in neurodegenerative diseases. We outline the next steps for in vivo, post-mortem and clinical studies that can lay the groundwork to evaluate the potential of locus coeruleus imaging as a biomarker for neurodegenerative diseases.Includes MRC, NIHR, Wellcome Trust, H2020 and FP7
    corecore