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ABSTRACT: Background: Mitochondrial membrane
protein-associated neurodegeneration is an autosomal-
recessive disorder caused by C19orf12 mutations and
characterized by iron deposits in the basal ganglia.

Objectives: The aim of this study was to quantify iron con-
centrations in deep gray matter structures using quantitative
susceptibility mapping MRI and to characterize metabolic
abnormalities in the pyramidal pathway using 1H MR
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spectroscopy in clinically manifesting membrane protein-
associated neurodegeneration patients and asymptomatic
C19orf12 gene mutation heterozygous carriers.
Methods: We present data of 4 clinically affected mem-
brane protein-associated neurodegeneration patients
(mean age: 21.0 � 2.9 years) and 9 heterozygous gene
mutation carriers (mean age: 50.4 � 9.8 years), com-
pared to age-matched healthy controls. MRI assess-
ments were performed on a 7.0 Tesla whole-body system,
consisting of whole-brain gradient-echo scans and short
echo time, single-volume MR spectroscopy in the white mat-
ter of the precentral/postcentral gyrus. Quantitative suscepti-
bility mapping, a surrogate marker for iron concentration, was
performed using a state-of-the-art multiscale dipole inversion
approach with focus on the globus pallidus, thalamus, puta-
men, caudate nucleus, and SN.
Results and Conclusion: In membrane protein-associ-
ated neurodegeneration patients, magnetic susceptibili-
ties were 2 to 3 times higher in the globus pallidus
(P = 0.02) and SN (P = 0.02) compared to controls. In
addition, significantly higher magnetic susceptibility was

observed in the caudate nucleus (P = 0.02). Non-
manifesting heterozygous mutation carriers exhibited
significantly increased magnetic susceptibility (relative
to controls) in the putamen (P = 0.003) and caudate
nucleus (P = 0.001), which may be an endophenotypic
marker of genetic heterozygosity. MR spectroscopy
revealed significantly increased levels of glutamate, tau-
rine, and the combined concentration of glutamate
and glutamine in membrane protein-associated neu-
rodegeneration, which may be a correlate of corticospinal
pathway dysfunction frequently observed in membrane
protein-associated neurodegeneration patients. © 2019
The Authors. Movement Disorders published by Wiley
Periodicals LLC on behalf of International Parkinson and
Movement Disorder Society.

Key Words: 7 Tesla MRI; glutamate; magnetic reso-
nance spectroscopy; mitochondrial membrane protein–
associated neurodegeneration (MPAN); neurodegeneration
with brain iron accumulation (NBIA); quantitative suscepti-
bility mapping, iron

The syndromes of neurodegeneration with brain iron
accumulation (NBIA) are a group of progressive hypo-
and/or hyperkinetic movement disorders associated
with pathological excess of iron deposition in the brain,
particularly affecting the basal ganglia, mainly the
globus pallidus (GP).1 Of these, mitochondrial mem-
brane protein-associated neurodegeneration (MPAN) is
a rare form caused by mutations in the C19orf12 gene,
which encodes a protein with a presumed function in
lipid metabolism.2-4 Symptoms include progressive
movement disorders, spasticity, neuropathy, cognitive
dysfunction, and optic nerve atrophy.
Iron accumulation inNBIA syndromes can be detected as a

prominent hypointensity in T2- and T2*-weighted
(T2w/T2*w) MRI.1 In MPAN, brain MRI typically shows
focal abnormalities consistent with increased iron levels in the
GP and SN.2 In older patients with long disease duration
and/or late onset, iron depositswere observed also in the puta-
men and caudate nucleus.5,6 Additionally, white matter
(WM) hyperintensities primarily affecting the periventricular
region,7 and cortical hypometabolism on brain
fluorodeoxyglucose PET,5 have also been described. Interest-
ingly, iron deposition inMPAN follows a similar pattern as in
pantothenate-kinase–associated neurodegeneration (PKAN),
where the predominant sites of iron accumulation are also the
GP and SN, despite substantial differences in clinical symp-
toms. Dystonia predominates in PKAN,8 whereas MPAN
patients typically manifest with spastic paresis,9 suggesting
involvement of the corticospinal pathway in addition to basal
ganglia disturbances.
To date, the vast majority of neuroimaging studies in

MPAN have utilized routine clinical MR scans.7 Iron-
sensitive quantitative MRI measures have only been

reported for a single MPAN case, showing 3 times higher
paramagnetism in GP and SN compared to controls.10 To
address the lack of quantitative data, we applied the tech-
nique of quantitative susceptibility mapping (QSM)11 with
ultrahigh field MRI to study the iron concentrations in the
cerebral deep gray matter inMPAN.
In addition, we investigated the neurochemical profile

in the precentral/postcentral WM using single-volume 1H
MR spectroscopy (MRS) on the earlier hypothesis that
metabolic abnormalities in the corticospinal pathway
might explain the pyramidal symptoms characteristically
present in MPAN patients.12 MRS benefits 2-fold from
acquisitions at higher static magnetic field strength (B0):
through enhanced sensitivity and increased spectral reso-
lution.13,14 In addition to MPAN patients, C19orf12 het-
erozygotes were also studied on the earlier hypotheses
that (subtle) clinical and/or imaging abnormalities are
present in this cohort, and the latter are detectable with
current MRI technology.
In summary, the aims of our study were to (1) quan-

tify iron concentration and volume of the deep gray
matter nuclei and (2) characterize underlying metabolic
changes using 1H MRS in the corticospinal pathway,
both in MPAN patients and heterozygous C19orf12
mutation carriers relative to healthy controls.

Participants and Methods
Participants

The study was approved by the local ethics commit-
tees, and participants gave written informed consent
before the study. Patients were identified through rou-
tine clinical care and through the international NBIA

Movement Disorders, Vol. 35, No. 1, 2020 143

7 T E S L A M R I F O R I R O N C H A R A C T E R I Z A T I O N I N M P A N



registry as set up in the “Treat Iron-Related Childhood-
Onset Neurodegeneration” (TIRCON) project (www.
TIRCON.eu).
Four MPAN patients (3/1 male/female; mean age:

21.0 � 2.9 [interval, 19–24] years) and 9 heterozygous gene
mutation carriers (4/5 male/female; mean age: 50.4 � 9.8
[interval, 36–63] years) were assessed (Table 1). Of note,
scans from 2 additionalMPAN patients and 1 heterozygous
carrier had to be excluded from the analysis because of
severe motion artifacts. Nineteen healthy volunteers (10/9
male/female; mean age: 41.2 � 14.9 [interval, 18–67] years)
were recruited for imaging comparison. The broad age
range of the healthy control group was set to (1) match both
young MPAN and older healthy adult heterozygote groups
and (2) calculate a regression equation for the dependence
of iron concentration on age in healthy population so that
changes in the heterozygous gene carrier group could
be appropriately contextualized. All study subjects were
whites.
MR spectra were acquired in 3 MPAN patients

(1 patient, subject 4, voluntarily withdrew from the ses-
sion before completion), 9 heterozygotes, and 9 controls
(with a mean age matched to the heterozygote group);
1 control subject was excluded from MRS analysis
because of poor data quality.
All participants were neurologically examined with

focus on the presence (patients) or absence (asymptom-
atic mutation carriers and controls) of movement disor-
der abnormalities.

MRI Data Acquisition
MR images were acquired on a Magnetom 7.0 Tesla

(T) whole-body MR system (Siemens Healthcare, Erlangen,
Germany), using a 24-channel receive head coil (NovaMedi-
cal, Wilmington, MA). The MRI protocol included a three-
dimensional (3D) magnetization-prepared rapid acquisition
with gradient echo scan (MPRAGE; repetition time
[TR] = 2,300 ms, echo time [TE] = 2.98 ms; inversion
time = 900 ms, flip angle [FA] = 5 degrees, spatial resolution
1.0 × 1.0 × 1.0 mm3, bandwidth = 238 Hz/pixel) for ana-
tomical imaging and guiding MRS volume positioning, a
two-dimensional (2D) fast low angle shot gradient echo scan
(GRE; TR = 1820ms, eight equidistant TEs from 4.1 to 25.5
ms, FA=35 degrees, spatial resolution = 0.5 × 0.5 × 2 mm3,
bandwidth = 407 Hz/pixel, 35 slices) for proton-density
(PD) and T2*-weighted anatomical imaging; and a 3D flow-
compensatedGRE scan (TR = 30ms, TE = 15.3ms, FA = 30
degrees, spatial resolution = 0.3 × 0.3 × 1 mm3, band-
width = 180Hz/pixel) forQSM.

QSM Postprocessing and Analysis
Phase images from separate radiofrequency (RF) coils

were combined offline using a virtual reference coil
approach.15 QSM was processed with the QSMbox soft-
ware package (https://gitlab.com/acostaj/QSMbox), using

a previously validated pipeline for combined single-echo
data and the multiscale dipole inversion procedure16 (reg-
ularization parameter λ = 630, default settings otherwise).
MPRAGE images were registered to the GREmagnitude

images using SPM12 software (www.fil.ion.ucl.ac.uk). 3D
regions of interest (ROIs) defining bilateral GP, SN, cau-
date nucleus, putamen, and thalamus were manually seg-
mented on coregistered QSM and MPRAGE images using
ITK-SNAP 3.6 (www.itksnap.org). Volumes and mean
susceptibility values of each ROI were extracted. Suscepti-
bility was obtained after excluding voxels containing large
vessels from segmentation masks and corrected by sub-
tracting the value from a homogenous reference region in
parietooccipital WM rostral to optic radiation. Volumetric
data were adjusted according to the total intracranial vol-
ume using the residual method as previously described.17

MRS Data Acquisition
For MRS, the volume of interest (VOI) was carefully

positioned into the left precentral/postcentral WM beneath
the central sulcus. Localized RF calibration was performed,
and first- and second-order shims were adjusted using a
vendor-supplied algorithm. Subsequently, the linewidth
(full width at half-maximum) of an unsuppressed water sig-
nal from the VOI was measured to verify the shim settings.
Single-volume data were acquired using the spin echo full
intensity acquired localized (SPECIAL)MRS technique13,18

(VOI = 20 × 20 × 20 mm3, TR/TE = 9000/11 ms, number
of averages [NA] = 64, spectral width = 4,000 Hz, and
Tacq = 512 ms). An unsuppressed water signal from the
same VOI was also measured using NA = 4. Full localiza-
tion in SPECIAL is achieved by combining a slice-selective
adiabatic inversion pulse applied in alternate scans with a
2D spin echo module. In addition, six bands of outer vol-
ume saturation were interleaved with the variable-pulse
power and optimized relaxation delays water suppression
scheme19 to eliminate lipid contaminations.13 For spectral
acquisitions, the reference excitation frequency was shifted
upfield 2.3 parts per million (ppm) from the water
resonance.

MRS Data Processing and Analysis
MRS data were postprocessed using an in-house

MATLAB (The MathWorks, Inc., Natick, MA) program.
Processing steps included the combination of signals from
multiple RF coil elements,20 applying the add-subtract
scheme inherent to SPECIAL, frequency drift correction of
the individual fully localized spectra, and averaging.Metab-
olite quantification was performed using LCModel21 with a
basis set of 21 simulated metabolites and an experimentally
acquired set of macromolecules including lipid signals for
improved accuracy.22 For analysis, the spectral range was
set to 0.2 to 4.2 ppm. Eddy current correction within
LCModel was enabled, and the unsuppressed water signal
from the VOI was used to calculate concentration values.
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Resulting in vivo concentrations were corrected for the cere-
brospinal fluid content of each VOI after segmenting the
T1-weighted MPRAGE images using FSL BET and FAST
routines (https://fsl.fmrib.ox.ac.uk).23

Statistical Analysis
Statistical analyses were conducted using GraphPad

Prism software (version v6.0.7; GraphPad Software Inc.,
San Diego, CA). Because of the well-known effect of age
on cerebral iron concentration and the significant age
difference between MPAN patients and heterozygous
mutation carriers, each group was compared with differ-
ent age-matched control groups. Mann-Whitney U tests
were performed to cross-sectionally compare MRS and
bulk ROI susceptibility values of biallelic and heterozy-
gous C19orf12 mutation carriers and control groups.
Given that this study is considered preliminary, corrections
for multiple comparisons were not performed. Subse-
quently, univariate linear regressions were performed to
characterize the effects of age on regional mean suscepti-
bilities in heterozygous C19orf12mutation carriers in con-
trast to those in healthy controls.

Results
Clinical Information and Visual MRI Analysis
Demographic and clinical data of patients and hetero-

zygotes are shown in Table 1. All patients had clinical
signs of corticospinal pathway lesion; disease onset
ranged from 8 to 12 years and duration of symptoms
from 10 to 13 years. Heterozygous C19orf12 mutation
carriers did not exhibit any neurological abnormalities

on examination, except one participant who had mild
action tremor (subject 6). Genetic testing with full
C19orf12 sequencing revealed homozygous mutations
in all patients.
All MPAN patients had pronounced hypointensities on

the magnitude images in the GP and SN (Figs. 1 and 2).
Subtle hypointensities were also observed in the anterior
aspect of the caudate nucleus (Fig. 2). The internal medul-
lary lamina of the GP was apparent onMPRAGE and PD-
weighted GRE images of all MPAN patients. Two patients
showed cerebellar atrophy, and cortical as well as central
atrophy, respectively (subjects 4 and 5; Fig. 1). In addition,
one of the heterozygous carriers exhibited unspecific WM
lesions (subject 11). MRI findings, including signal in the
basal ganglia, in the other heterozygotes were normal on
visual inspection.

QSM and Volumetric Analysis
In MPAN patients, bulk magnetic susceptibility in the

GP (P = 0.016) and SN (P = 0.016) was substantially
higher compared to controls. In addition, significantly
higher magnetic susceptibility was also observed in the
caudate nucleus (P = 0.016; Figs. 1 and 3). C19orf12
mutation heterozygotes exhibited significantly increased
susceptibility in the putamen (P = 0.003) and caudate
nucleus (P = 0.001), whereas susceptibility in the GP,
SN, and thalamus was not significantly different from
those in controls (Fig. 3; Supporting Information
Table S1). Linear regression analysis in healthy controls
showed significant positive correlations between age and
susceptibility in the putamen (r2 = 0.80; P < 0.0001),
caudate nucleus (r2 = 0.30; P = 0.015), and SN

TABLE 1. Demographic, clinical, and genetic information of MPAN subjects

ID Family Group Age Clinical Status Age at Onset Genetics

1 Family 1a Het 60 Non-Manif n/a c.197-199del3 (p.Gly66del)
2 Family 1a Het 55 Non-Manif n/a c.32C>T (p.Thr11Met);
3 Family 2a Het 55 Non-Manif n/a c.204-214del11bp (p.Gly69Argfs*10)
4 Family 3b Pat 24 Dysarthria, dystonia, parkinsonism,

mild intention tremor, axonal neuropathy
11 c.177-178insG (p.Leu60Alafs10X), homozygous

5 Family 4c Pat 24 Optic nerve atrophy, muscle atrophy,
mixed quadruparesis, dysarthria

12 c.204_214del11 (p.Gly69RfsX10), homozygous

6 Family 4c Het 61 Mild intention tremor n.d. c.204_214del11 (p.Gly69RfsX10)d

7 Family 4c Het 64 Non-Manif n/a c.204_214del11 (p.Gly69RfsX10)d

8 Family 5c Pat 19 Optic nerve atrophy, dysarthria, leg spasticity
with ankle contractions, mild dystonia,
wheelchair-bound

8 c.204_214del11 (p.Gly69RfsX10); homozygous

9 Family 5c Het 37 Non-Manif n/a c.204_214del11 (p.Gly69RfsX10)d

10 Family 5c Het 42 Non-Manif n/a c.204_214del11 (p.Gly69RfsX10)d

11 Family 6 Het 45 Non-Manif n/a c.194G>T
12 Family 7 Pat 19 Optic nerve atrophy, dystonic smile, dysarthia, spastic

quadruparesis, pes cavus, gait only with walker
9 c.204-214del11bp (p.G69RfsX10), homozygous

13 Family 7 Het 41 Non-Manif n/a c.204-214del11bp (p.G69RfsX10)

aFamilies previously reported by Deschauer and colleagues.43
bPreviously reported by Schottmann and colleagues.44
cPreviously reported by Hartig and colleagues.2
dHeterozygotes not formally genetically tested, their genotype was deducted from the known mutation in their offspring.
Het, heterozygous; Pat, patient; Non-Manif, nonmanifesting; n/a, not applicable; n.d., no data.
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(r2 = 0.26; P = 0.027), whereas there were no significant
correlations in GP and thalamus. The slope of age-related
iron accumulation was not significantly different between
healthy controls and heterozygotes. The y-intercept,
however, was significantly higher in the putamen
(P < 0.0001) and caudate nucleus (P = 0.0006;

Supporting Information Fig. S1) in heterozygotes com-
pared to healthy controls. Volumetric analysis of deep gray
matter nuclei did not show any significant differences
betweenC19orf12mutation heterozygotes and age-matched
controls. InMPAN patients, volumes of the caudate nucleus
(P = 0.016), putamen (P = 0.032), and thalamus (P = 0.032)

FIG. 1. (A) Axial MPRAGE and (B) short-echo (4.1 ms) 2D GRE images show profound iron deposits in the GP with preservation of internal medullary
lamina in an MPAN patient (white and black arrowheads); (C) in the late-echo (19.4 ms) 2D GRE image, the internal medullary lamina is overshadowed
by the signal drop attributable to magnetic field inhomogeneities caused by nonlocal sources (white arrowhead); a hypointensity of the caudate nucleus
becomes apparent (white arrow); (D) 2D GRE image showing iron deposits in the SN (open arrow); (E) sagittal MPRAGE image demonstrating cerebellar
atrophy in an MPAN patient (white arrows); exemplary susceptibility maps (in parts per billion [ppb]) of an (F) MPAN patient and (G) age-matched con-
trol; (H) the latter is shown with segmentation mask (caudate nucleus in yellow, putamen in green, GP in red, and thalamus in cyan color); inset shows
reference region in parieto-occipital WM on a more rostral slice (in pink). [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 2. Axial 3D GRE magnitude images of all MPAN patients at the level of basal ganglia. Profound hypointensities are apparent in the GP (white
arrowheads), with less pronounced signal reduction in the head of the caudate nucleus (white arrows). (A) Subject 4, (B) subject 5, (C) subject 8, and
(D) subject 12.
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were significantly smaller compared to age-matched controls
(Supporting InformationTable S1).

MRS
Localized shimming resulted in water linewidths of

11.4 � 0.9, 11.4 � 0.9, and 12.2 � 0.4 Hz for controls,
heterozygotes, and patients, respectively. The high signal-
to-noise ratio (SNR) of the spectra, exemplified in
Figure 4, allowed the quantification of 13 individual and
five combined metabolites with Cramér-Rao lower bou-
nds (CRLBs) <20% for all three groups, including
gamma-aminobutyric acid, glutamine (Gln), glutamate
(Glu), and lactate (Lac). Metabolite quantification with
CRLB lower than 20% are often deemed as reliable,
although for metabolites with inherently low concentra-
tions, such a threshold should be applied with caution.24

Comparing patients and controls revealed significant
increases (P = 0.009) in Glu, taurine (Tau), and the com-
bined concentration of Glu + Gln in the patient group.
No significant differences between heterozygotes and
controls were detected, except for a statistical trend in
total choline levels (tCho). Mean metabolite concentra-
tions obtained from heterozygotes and controls are
shown as well as the individual results of the MPAN
patients in Supporting Information Table S2.

Discussion

In this ultrahigh field MR study, we utilized QSM to
quantify iron content in the basal ganglia and thalamus
and MRS of WM to characterize the metabolic footprint
of MPAN patients and asymptomatic heterozygous

FIG. 3. Magnetic susceptibility in all examined ROIs in (A) MPAN
homozygotes and (B) heterozygotes compared to age-matched
healthy controls. Dots represent individual values of each subject; hor-
izontal lines represent group means and standard deviations. Statisti-
cally significant differences with P values are denoted. ppb, parts per
billion. [Color figure can be viewed at wileyonlinelibrary.com]

FIG. 4. 1H MR spectra from a VOI in the precentral/postcentral WM (inset) acquired at 7T with the SPECIAL sequence (TR/TE = 9,000/11 ms) for an
age-matched control (left) and a MPAN patient (right). Metabolites with significant concentration changes are indicated. Note the high SNR and compa-
rable data quality of the two data sets. ppm, parts per million. [Color figure can be viewed at wileyonlinelibrary.com]
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C19orf12 gene mutation carriers in contrast to healthy
controls of comparable age.

MPAN Findings
A 2- to 3-fold increase of magnetic susceptibility

strongly suggests an increase in iron content in the GP
and SN of MPAN patients compared to controls. Com-
pared to the pattern of iron accumulation in PKAN,
which is largely confined to the GP and SN,25,26 in
MPAN we also observed an abnormality in the caudate
nucleus; less pronounced, but also consistent with iron
deposition. Additionally, atrophy of the caudate nucleus
found in patients supports involvement of this structure in
MPAN. It is worth noting, however, that structural atro-
phy could theoretically affect the measured local suscepti-
bilities. It is unclear whether the loss of soft tissue as a
whole or of diamagnetic myelin specifically dominates this
interaction. Nonetheless, it is widely accepted that suscep-
tibility measurements are somewhat confounded by
regional gray matter atrophy. In this study, however, we
detected early susceptibility changes in the caudate nucleus
and putamen of heterozygous mutation carriers in the
absence of detectable atrophy, suggesting that iron deposi-
tion may be an upstream event preceding cell loss in the
caudate nucleus of MPAN patients. Previous studies in
MPAN using clinical MRI at 3.0 T showed caudate iron
accumulation only in late-onset or long-standing cases.5 In
this study, taking advantage of the enhanced sensitivity to
iron-induced field inhomogeneities at ultrahigh magnetic
field strengths, we have shown that caudate nucleus iron
accumulation is a common feature of MPAN patients
with typical age at onset and relatively short disease dura-
tion. None of the patients displayed an “eye-of-the-tiger
sign,” which is considered to be pathognomonic of
PKAN, but has also been observed, albeit in a less pro-
nounced form, in MPAN.27,28

We observed slight metabolite concentration differ-
ences between patients and controls in the corticospinal
tracts. Caution should be exercised, however, when
interpreting these findings, because of the limited num-
ber of examined patients. The increase in Tau levels
might be partially attributed to the relatively young age
of the patient group compared to controls, given that
taurine decreases with age.29 On the other hand,
increased Glu levels in MPAN patients may be related
to a dysfunctional regulation of excitatory neuron-glia
transmission30 along fibers of the motor pathway,
which could thus explain the predominant spastic-
paretic phenotype in MPAN. It is well established that
vesicular Glu release from the axons in WM contributes
to action-potential propagation.31 It has been also
documented that chronically increased glutamatergic
release from central nervous system (CNS) axons may
lead to myelin damage.32 Increased Glu detectable by
MRS in earlier disease stages may thus precede the

macroscopic WM lesions often observed in MPAN
patients with long-standing disease.7 Atrophy of the
thalamus and striatum detected by the volumetric anal-
ysis further confirms that MPAN affects not only GP
and SN, but also causes global CNS abnormalities.
Previous MRS studies showed abnormal cerebral Glu

concentration in various diseases, such as schizophre-
nia, hepatic encephalopathy, and migraine.33,34 Other
NBIA subtypes have also been studied using MRS.
Interestingly, increased Glu/Gln compound levels were
also observed in the periventricular WM in PKAN
patients.35 It is thus possible that increased Glu levels in
WM is a common finding across NBIA disorders or
even more likely an unspecific marker of dysfunctional
transmission along WM tracts in general. These MRS
studies cannot be directly compared; therefore, it
remains to be elucidated whether greater pyramidal Glu
levels in MPAN compared to PKAN could explain
the prominent spastic paresis heralding the former
disorder.

Investigation of Heterozygotes
This study also aimed to ascertain whether asymp-

tomatic, non-manifesting relatives with heterozygous
gene mutations show subtle neuroradiological and/or
-chemical abnormalities (i.e., signs of iron accumulation
or metabolic changes) that could serve as endo-
phenotypic markers. The precedent to this hypothesis
are mild abnormalities identified in heterozygous gene
mutation carriers of other recessive movement disor-
ders, such as Parkin- or PINK1-related parkinson-
ism.36,37 Confirming our hypothesis, this study detected
statistically significant changes in striatal iron levels in
heterozygotes, whereas the metabolic pattern measured
by MRS was not statistically different from that in con-
trols. Regression analysis of age and magnetic suscepti-
bility showed similar slope, but significantly higher y-
intercept, in heterozygotes compared to controls,
suggesting that striatal iron levels are elevated in het-
erozygotes from a relatively young age. This is in con-
trast to PKAN, the most common NBIA variant, where
brain iron content was within normal limits in hetero-
zygous mutation carriers.25,26

Interestingly, heterozygous C19orf12 gene mutation
carriers showed higher iron content in the striatum, but
not in GP and SN, which are the primary sites of iron
depositions in homozygotes. This, together with the
finding of increased magnetic susceptibility and acceler-
ated atrophy in the caudate nucleus in MPAN patients,
suggests that the striatum could be the primary site of
iron accumulation and disease pathology, whereas the
GP might be a downstream “sink” where iron is ulti-
mately deposited. It is, however, not clear why
increased iron was not observed in the putamen in
MPAN patients, particularly when putaminal atrophy
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was detected in this group. A possible explanation is
that the putamen is directly adjacent to the GP, and
therefore its associated signal is at greater risk of con-
tamination by the nonlocal effect of magnetic field dis-
turbances caused by the high levels of GP iron in
MPAN. This conceivable scenario warrants a future
technical investigation. Direct measurement of iron con-
centrations in ex vivo tissue could provide an indepen-
dent ground truth to address this question. Absence of
movement disorders in 8 of 9 examined heterozygotes
suggests that increased iron levels alone may not be
clinically significant. However, we only performed rou-
tine clinical examination without any quantitative
motor or cognitive testing. Minor cognitive and motor
deficits cannot be ruled out in C19orf12 heterozygotes
given that previous studies have shown correlations
between higher iron content in the putamen and GP
and worse cognitive and motor function in healthy
elderly subjects38,39 and found evidence of elevated iron
content preceding atrophy in the putamen.40 Higher
variability of cerebral iron concentration in elderly sub-
jects has been described previously,41 though its causes
remain largely unknown.42 Our results suggest that
genetic factors may, at least to some extent, underlie
this variability.
Several limitations should be noted. Most important,

it is the small number of patients that could be included
because of the low prevalence of MPAN and strict rules
for using ultrahigh field MRI. Of note, despite that we
have not used multiple comparison correction, the
results are still robust for major findings; the statistical
significance of higher magnetic susceptibility in hetero-
zygotes compared to controls survives the conservative
Bonferroni correction for the family of five tests yield-
ing corrected threshold of P < 0.01. Additionally, statis-
tical significance of higher magnetic susceptibility in the
caudate nucleus in MPAN patients compared to con-
trols is also below the Bonferroni-corrected P-value
threshold for three tests (P < 0.017); three tests are con-
sidered given that higher iron content in the GP and SN
in MPAN patients is well known, so the statistical anal-
ysis in these two ROIs can be regarded as formal and
confirmatory. Also, it is not clear whether magnetic sus-
ceptibility is linearly related to iron concentrations
under the circumstances of heavy iron deposition as is
the case in NBIA. Nevertheless, nonlinear relation
between magnetic susceptibility and iron content would
not derogate significant differences found in this study.
Spatial distortions are also a known issue of ultrahigh
field MRI. Although we made an effort to minimize
them by segmenting deep gray matter nuclei simulta-
neously on MPRAGE and QSM images, volumetric
results must be interpreted with caution and warrant a
future investigation.
In conclusion, compared to healthy subjects, MPAN

patients consistently display not only increased iron in

the GP and SN, but also in the caudate nucleus along
with metabolic changes in the corticospinal pathway.
Our findings imply that heterozygosity leads to subtle
iron accumulation in the striatum, even in the absence
of overt neurological signs.
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