230 research outputs found
Supersymmetric effects in top quark decay into polarized W-boson
We investigate the one-loop supersymmetric QCD (SUSY-QCD) and electroweak
(SUSY-EW) corrections to the top quark decay into a b-quark and a longitudinal
or transverse W-boson. The corrections are presented in terms of the
longitudinal ratio \Gamma(t-->W_L b)/\Gamma(t--> W b) and the transverse ratio
\Gamma(t-->W_- b)/\Gamma(t--> W b). In most of the parameter space, both
SUSY-QCD and SUSY-EW corrections to these ratios are found to be less than 1%
in magnitude and they tend to have opposite signs. The corrections to the total
width \Gamma(t-->W b) are also presented for comparison with the existing
results in the literature. We find that our SUSY-EW corrections to the total
width differ significantly from previous studies: the previous studies give a
large correction of more than 10% in magnitude for a large part of the
parameter space while our results reach only few percent at most.Comment: Version in PRD (explanation and refs added
Probing Topcolor-Assisted Technicolor from Top-Charm Associated Production at LHC
We propose to probe the topcolor-assisted technicolor (TC2) model from the
top-charm associated productions at the LHC, which are highly suppressed in the
Standard Model. Due to the flavor-changing couplings of the top quark with the
scalars (top-pions and top-Higgs) in TC2 model, the top-charm associated
productions can occur via both the s-channel and t-channel parton processes by
exchanging a scalar field at the LHC. We examined these processes through Monte
Carlo simulation and found that they can reach the observable level at the LHC
in quite a large part of the parameter space of the TC2 model.Comment: Version to appear in PRD (Rapid Communication
Validity of numerical trajectories in the synchronization transition of complex systems
We investigate the relationship between the loss of synchronization and the
onset of shadowing breakdown {\it via} unstable dimension variability in
complex systems. In the neighborhood of the critical transition to strongly
non-hyperbolic behavior, the system undergoes on-off intermittency with respect
to the synchronization state. There are potentially severe consequences of
these facts on the validity of the computer-generated trajectories obtained
from dynamical systems whose synchronization manifolds share the same
non-hyperbolic properties.Comment: 4 pages, 4 figure
Surface and capillary transitions in an associating binary mixture model
We investigate the phase diagram of a two-component associating fluid mixture
in the presence of selectively adsorbing substrates. The mixture is
characterized by a bulk phase diagram which displays peculiar features such as
closed loops of immiscibility. The presence of the substrates may interfere the
physical mechanism involved in the appearance of these phase diagrams, leading
to an enhanced tendency to phase separate below the lower critical solution
point. Three different cases are considered: a planar solid surface in contact
with a bulk fluid, while the other two represent two models of porous systems,
namely a slit and an array on infinitely long parallel cylinders. We confirm
that surface transitions, as well as capillary transitions for a large
area/volume ratio, are stabilized in the one-phase region. Applicability of our
results to experiments reported in the literature is discussed.Comment: 12 two-column pages, 12 figures, accepted for publication in Physical
Review E; corrected versio
Exact Hypersurface-Homogeneous Solutions in Cosmology and Astrophysics
A framework is introduced which explains the existence and similarities of
most exact solutions of the Einstein equations with a wide range of sources for
the class of hypersurface-homogeneous spacetimes which admit a Hamiltonian
formulation. This class includes the spatially homogeneous cosmological models
and the astrophysically interesting static spherically symmetric models as well
as the stationary cylindrically symmetric models. The framework involves
methods for finding and exploiting hidden symmetries and invariant submanifolds
of the Hamiltonian formulation of the field equations. It unifies, simplifies
and extends most known work on hypersurface-homogeneous exact solutions. It is
shown that the same framework is also relevant to gravitational theories with a
similar structure, like Brans-Dicke or higher-dimensional theories.Comment: 41 pages, REVTEX/LaTeX 2.09 file (don't use LaTeX2e !!!) Accepted for
publication in Phys. Rev.
How Coupling Determines the Entrainment of Circadian Clocks
Autonomous circadian clocks drive daily rhythms in physiology and behaviour.
A network of coupled neurons, the suprachiasmatic nucleus (SCN), serves as a
robust self-sustained circadian pacemaker. Synchronization of this timer to the
environmental light-dark cycle is crucial for an organism's fitness. In a
recent theoretical and experimental study it was shown that coupling governs
the entrainment range of circadian clocks. We apply the theory of coupled
oscillators to analyse how diffusive and mean-field coupling affects the
entrainment range of interacting cells. Mean-field coupling leads to amplitude
expansion of weak oscillators and, as a result, reduces the entrainment range.
We also show that coupling determines the rigidity of the synchronized SCN
network, i.e. the relaxation rates upon perturbation. %(Floquet exponents). Our
simulations and analytical calculations using generic oscillator models help to
elucidate how coupling determines the entrainment of the SCN. Our theoretical
framework helps to interpret experimental data
Evaluation of a SPLUNC1-derived peptide for the treatment of cystic fibrosis lung disease
In cystic fibrosis (CF) lungs, epithelial Na+ channel (ENaC) hyperactivity causes a reduction in airway surface liquid volume, leading to decreased mucocilliary clearance, chronic bacterial infection, and lung damage. Inhibition of ENaC is an attractive therapeutic option. However, ENaC antagonists have failed clinically because of off-target effects in the kidney. The S18 peptide is a naturally occurring short palate lung and nasal epithelial clone 1 (SPLUNC1)-derived ENaC antagonist that restores airway surface liquid height for up to 24 h in CF human bronchial epithelial cultures. However, its efficacy and safety in vivo are unknown. To interrogate the potential clinical efficacy of S18, we assessed its safety and efficacy using human airway cultures and animal models. S18-mucus interactions were tested using superresolution microscopy, quartz crystal microbalance with dissipation, and confocal microscopy. Human and murine airway cultures were used to measure airway surface liquid height. Off-target effects were assessed in conscious mice and anesthetized rats. Morbidity and mortality were assessed in the ÎČ-ENaC-transgenic (Tg) mouse model. Restoration of normal mucus clearance was measured in cystic fibrosis transmembrane conductance regulator inhibitor 172 [CFTR(inh)-172]-challenged sheep. We found that S18 does not interact with mucus and rapidly penetrated dehydrated CF mucus. Compared with amiloride, an early generation ENaC antagonist, S18 displayed a superior ability to slow airway surface liquid absorption, reverse CFTR(inh)-172-induced reduction of mucus transport, and reduce morbidity and mortality in the ÎČ-ENaC-Tg mouse, all without inducing any detectable signs of renal toxicity. These data suggest that S18 is the first naturally occurring ENaC antagonist to show improved preclinical efficacy in animal models of CF with no signs of renal toxicity
Identifying an indoor air exposure limit for formaldehyde considering both irritation and cancer hazards
Formaldehyde is a well-studied chemical and effects from inhalation exposures have been extensively characterized in numerous controlled studies with human volunteers, including asthmatics and other sensitive individuals, which provide a rich database on exposure concentrations that can reliably produce the symptoms of sensory irritation. Although individuals can differ in their sensitivity to odor and eye irritation, the majority of authoritative reviews of the formaldehyde literature have concluded that an air concentration of 0.3 ppm will provide protection from eye irritation for virtually everyone. A weight of evidence-based formaldehyde exposure limit of 0.1 ppm (100 ppb) is recommended as an indoor air level for all individuals for odor detection and sensory irritation. It has recently been suggested by the International Agency for Research on Cancer (IARC), the National Toxicology Program (NTP), and the US Environmental Protection Agency (US EPA) that formaldehyde is causally associated with nasopharyngeal cancer (NPC) and leukemia. This has led US EPA to conclude that irritation is not the most sensitive toxic endpoint and that carcinogenicity should dictate how to establish exposure limits for formaldehyde. In this review, a number of lines of reasoning and substantial scientific evidence are described and discussed, which leads to a conclusion that neither point of contact nor systemic effects of any type, including NPC or leukemia, are causally associated with exposure to formaldehyde. This conclusion supports the view that the equivocal epidemiology studies that suggest otherwise are almost certainly flawed by identified or yet to be unidentified confounding variables. Thus, this assessment concludes that a formaldehyde indoor air limit of 0.1 ppm should protect even particularly susceptible individuals from both irritation effects and any potential cancer hazard
Measurement of the View the tt production cross-section using eÎŒ events with b-tagged jets in pp collisions at âs = 13 TeV with the ATLAS detector
This paper describes a measurement of the inclusive top quark pair production cross-section (ÏttÂŻ) with a data sample of 3.2 fbâ1 of protonâproton collisions at a centre-of-mass energy of âs = 13 TeV, collected in 2015 by the ATLAS detector at the LHC. This measurement uses events with an opposite-charge electronâmuon pair in the final state. Jets containing b-quarks are tagged using an algorithm based on track impact parameters and reconstructed secondary vertices. The numbers of events with exactly one and exactly two b-tagged jets are counted and used to determine simultaneously ÏttÂŻ and the efficiency to reconstruct and b-tag a jet from a top quark decay, thereby minimising the associated systematic uncertainties. The cross-section is measured to be:
ÏttÂŻ = 818 ± 8 (stat) ± 27 (syst) ± 19 (lumi) ± 12 (beam) pb,
where the four uncertainties arise from data statistics, experimental and theoretical systematic effects, the integrated luminosity and the LHC beam energy, giving a total relative uncertainty of 4.4%. The result is consistent with theoretical QCD calculations at next-to-next-to-leading order. A fiducial measurement corresponding to the experimental acceptance of the leptons is also presented
- âŠ