17 research outputs found

    Developing Adult Faith Formation at Our Lady of Guadalupe Parish, Helotes

    Get PDF
    My project will be to offer assistance to the staff of Our Lady of Guadalupe Parish in Helotes, Texas, in the area of adult faith formation. This will be a two-part project over the course of a nine-month period. The first part will be to examine various Scripture Study programs, select one as a test, offer it in the Fall of 2002, and evaluate it for possible continuation or rejection. The second element of this project will be to assess the needs, desires and availability of adults regarding other aspects of adult faith formation. Our Lady of Guadalupe is a rapidly growing parish and it has been several years since the parishioners were last surveyed. An assessment of adult faith formation needs will be conducted by a survey in the Spring of 2003. Documents of the Second Vatican Council and more recently, from the United States Bishops have repeatedly stressed the importance of adult faith formation. In line with these guidelines, Our Lady of Guadalupe plans to hire an Adult Faith Formation Coordinator as soon as possible. It is my desire that my project will be of assistance to this new staff member for the purposes of future plannin

    Legacy genetics of Arachis cardenasii in the peanut crop shows the profound benefits of international seed exchange

    Get PDF
    A great challenge for humanity is feeding its growing population while minimizing ecosystem damage and climate change. Here, we uncover the global benefits arising from the introduction of one wild species accession to peanut-breeding programs decades ago. This work emphasizes the importance of biodiversity to crop improvement: peanut cultivars with genetics from this wild accession provided improved food security and reduced use of fungicide sprays. However, this study also highlights the perilous consequences of changes in legal frameworks and attitudes concerning biodiversity. These changes have greatly reduced the botanical collections, seed exchanges, and international collaborations which are essential for the continued diversification of crop genetics and, consequently, the long-term resilience of crops against evolving pests and pathogens and changing climate.The narrow genetics of most crops is a fundamental vulnerability to food security. This makes wild crop relatives a strategic resource of genetic diversity that can be used for crop improvement and adaptation to new agricultural challenges. Here, we uncover the contribution of one wild species accession, Arachis cardenasii GKP 10017, to the peanut crop (Arachis hypogaea) that was initiated by complex hybridizations in the 1960s and propagated by international seed exchange. However, until this study, the global scale of the dispersal of genetic contributions from this wild accession had been obscured by the multiple germplasm transfers, breeding cycles, and unrecorded genetic mixing between lineages that had occurred over the years. By genetic analysis and pedigree research, we identified A. cardenasii–enhanced, disease-resistant cultivars in Africa, Asia, Oceania, and the Americas. These cultivars provide widespread improved food security and environmental and economic benefits. This study emphasizes the importance of wild species and collaborative networks of international expertise for crop improvement. However, it also highlights the consequences of the implementation of a patchwork of restrictive national laws and sea changes in attitudes regarding germplasm that followed in the wake of the Convention on Biological Diversity. Today, the botanical collections and multiple seed exchanges which enable benefits such as those revealed by this study are drastically reduced. The research reported here underscores the vital importance of ready access to germplasm in ensuring long-term world food security.Genome sequence, genotyping, pedigree information, and yield trial data have been deposited in National Center for Biotechnology Information (NCBI), PeanutBase, and USDA Data Repository (NCBI: JADQCP000000000) (14). Datasets S1–S6 are available at USDA Ag Data Commons: https://data.nal.usda.gov/dataset/data-legacy-genetics-arachis-cardenasii-peanut-crop-v2 (17). All other study data are included in the article and/or supporting information

    Genetic mechanisms of critical illness in COVID-19.

    Get PDF
    Host-mediated lung inflammation is present1, and drives mortality2, in the critical illness caused by coronavirus disease 2019 (COVID-19). Host genetic variants associated with critical illness may identify mechanistic targets for therapeutic development3. Here we report the results of the GenOMICC (Genetics Of Mortality In Critical Care) genome-wide association study in 2,244 critically ill patients with COVID-19 from 208 UK intensive care units. We have identified and replicated the following new genome-wide significant associations: on chromosome 12q24.13 (rs10735079, P = 1.65 × 10-8) in a gene cluster that encodes antiviral restriction enzyme activators (OAS1, OAS2 and OAS3); on chromosome 19p13.2 (rs74956615, P = 2.3 × 10-8) near the gene that encodes tyrosine kinase 2 (TYK2); on chromosome 19p13.3 (rs2109069, P = 3.98 ×  10-12) within the gene that encodes dipeptidyl peptidase 9 (DPP9); and on chromosome 21q22.1 (rs2236757, P = 4.99 × 10-8) in the interferon receptor gene IFNAR2. We identified potential targets for repurposing of licensed medications: using Mendelian randomization, we found evidence that low expression of IFNAR2, or high expression of TYK2, are associated with life-threatening disease; and transcriptome-wide association in lung tissue revealed that high expression of the monocyte-macrophage chemotactic receptor CCR2 is associated with severe COVID-19. Our results identify robust genetic signals relating to key host antiviral defence mechanisms and mediators of inflammatory organ damage in COVID-19. Both mechanisms may be amenable to targeted treatment with existing drugs. However, large-scale randomized clinical trials will be essential before any change to clinical practice

    The James Webb Space Telescope Mission

    Full text link
    Twenty-six years ago a small committee report, building on earlier studies, expounded a compelling and poetic vision for the future of astronomy, calling for an infrared-optimized space telescope with an aperture of at least 4m4m. With the support of their governments in the US, Europe, and Canada, 20,000 people realized that vision as the 6.5m6.5m James Webb Space Telescope. A generation of astronomers will celebrate their accomplishments for the life of the mission, potentially as long as 20 years, and beyond. This report and the scientific discoveries that follow are extended thank-you notes to the 20,000 team members. The telescope is working perfectly, with much better image quality than expected. In this and accompanying papers, we give a brief history, describe the observatory, outline its objectives and current observing program, and discuss the inventions and people who made it possible. We cite detailed reports on the design and the measured performance on orbit.Comment: Accepted by PASP for the special issue on The James Webb Space Telescope Overview, 29 pages, 4 figure

    Genome sequence of the palaeopolyploid soybean

    Get PDF
    Soybean (Glycine max) is one of the most important crop plants for seed protein and oil content, and for its capacity to fix atmospheric nitrogen through symbioses with soil-borne microorganisms. We sequenced the 1.1-gigabase genome by a whole-genome shotgun approach and integrated it with physical and high-density genetic maps to create a chromosome-scale draft sequence assembly. We predict 46,430 protein-coding genes, 70% more than Arabidopsis and similar to the poplar genome which, like soybean, is an ancient polyploid (palaeopolyploid). About 78% of the predicted genes occur in chromosome ends, which comprise less than one-half of the genome but account for nearly all of the genetic recombination. Genome duplications occurred at approximately 59 and 13 million years ago, resulting in a highly duplicated genome with nearly 75% of the genes present in multiple copies. The two duplication events were followed by gene diversification and loss, and numerous chromosome rearrangements. An accurate soybean genome sequence will facilitate the identification of the genetic basis of many soybean traits, and accelerate the creation of improved soybean varieties. All supplemental information is included in the downloadable PDF file, except for the data file for Supplementary Table S5, which is attached (below) as an Additional file
    corecore