7 research outputs found

    How should the completeness and quality of curated nanomaterial data be evaluated

    Get PDF
    Nanotechnology is of increasing significance. Curation of nanomaterial data into electronic databases offers opportunities to better understand and predict nanomaterials’ behaviour. This supports innovation in, and regulation of, nanotechnology. It is commonly understood that curated data need to be sufficiently complete and of sufficient quality to serve their intended purpose. However, assessing data completeness and quality is non-trivial in general and is arguably especially difficult in the nanoscience area, given its highly multidisciplinary nature. The current article, part of the Nanomaterial Data Curation Initiative series, addresses how to assess the completeness and quality of (curated) nanomaterial data. In order to address this key challenge, a variety of related issues are discussed: the meaning and importance of data completeness and quality, existing approaches to their assessment and the key challenges associated with evaluating the completeness and quality of curated nanomaterial data. Considerations which are specific to the nanoscience area and lessons which can be learned from other relevant scientific disciplines are considered. Hence, the scope of this discussion ranges from physicochemical characterisation requirements for nanomaterials and interference of nanomaterials with nanotoxicology assays to broader issues such as minimum information checklists, toxicology data quality schemes and computational approaches that facilitate evaluation of the completeness and quality of (curated) data. This discussion is informed by a literature review and a survey of key nanomaterial data curation stakeholders. Finally, drawing upon this discussion, recommendations are presented concerning the central question: how should the completeness and quality of curated nanomaterial data be evaluated

    How should the completeness and quality of curated nanomaterial data be evaluated?

    Get PDF
    Nanotechnology is of increasing significance. Curation of nanomaterial data into electronic databases offers opportunities to better understand and predict nanomaterials' behaviour. This supports innovation in, and regulation of, nanotechnology. It is commonly understood that curated data need to be sufficiently complete and of sufficient quality to serve their intended purpose. However, assessing data completeness and quality is non-trivial in general and is arguably especially difficult in the nanoscience area, given its highly multidisciplinary nature. The current article, part of the Nanomaterial Data Curation Initiative series, addresses how to assess the completeness and quality of (curated) nanomaterial data. In order to address this key challenge, a variety of related issues are discussed: the meaning and importance of data completeness and quality, existing approaches to their assessment and the key challenges associated with evaluating the completeness and quality of curated nanomaterial data. Considerations which are specific to the nanoscience area and lessons which can be learned from other relevant scientific disciplines are considered. Hence, the scope of this discussion ranges from physicochemical characterisation requirements for nanomaterials and interference of nanomaterials with nanotoxicology assays to broader issues such as minimum information checklists, toxicology data quality schemes and computational approaches that facilitate evaluation of the completeness and quality of (curated) data. This discussion is informed by a literature review and a survey of key nanomaterial data curation stakeholders. Finally, drawing upon this discussion, recommendations are presented concerning the central question: how should the completeness and quality of curated nanomaterial data be evaluated

    Experimental and theoretical comparison of intracellular import of polymeric nanoparticles and small molecules:toward models of uptake kinetics

    No full text
    UNLABELLED: Central to understanding how nanoscale objects interact with living matter is the need for reproducible and verifiable data that can be interpreted with confidence. Likely this will be the basis of durable advances in nanomedicine and nanomedical safety. To develop these fields, there is also considerable interest in advancing the first generation of theoretical models of nanoparticle (NP) uptake into cells, and NP biodistribution in general. Here we present an uptake study comparing the outcomes for free molecular dye and NPs labeled with the same dye. A simple flux-based approach is presented to model NP uptake. We find that the intracellular NP concentration grows linearly in time, and that the uptake is essentially irreversible, with the particles accumulating in lysosomes. A wide range of practical challenges, from labile dye release to NP aggregation and the need to account for cell division, are addressed to ensure that these studies yield meaningful kinetic information.FROM THE CLINICAL EDITOR: The authors present an uptake study comparing the outcomes for free molecular dye and NPs labeled with the same dye. A wide range of practical challenges are addressed including labile dye release, NP aggregation and the need to account for cell division with the goal that these studies yield meaningful kinetic information.</p
    corecore