80 research outputs found

    Fast oxidation of sulfur dioxide by hydrogen peroxide in deliquesced aerosol particles

    Get PDF
    Atmospheric sulfate aerosols have important impacts on air quality, climate, and human and ecosystem health. However, current air-quality models generally underestimate the rate of conversion of sulfur dioxide (SO2) to sulfate during severe haze pollution events, indicating that our understanding of sulfate formation chemistry is incomplete. This may arise because the air-quality models rely upon kinetics studies of SO2 oxidation conducted in dilute aqueous solutions, and not at the high solute strengths of atmospheric aerosol particles. Here, we utilize an aerosol flow reactor to perform direct investigation on the kinetics of aqueous oxidation of dissolved SO2 by hydrogen peroxide (H2O2) using pH-buffered, submicrometer, deliquesced aerosol particles at relative humidity of 73 to 90%. We find that the high solute strength of the aerosol particles significantly enhances the sulfate formation rate for the H2O2 oxidation pathway compared to the dilute solution. By taking these effects into account, our results indicate that the oxidation of SO2 by H2O2 in the liquid water present in atmospheric aerosol particles can contribute to the missing sulfate source during severe haze episodes

    Review Of Recent Developments And Shortcomings In The Characterization Of Potential Atmospheric Ice Nuclei : Focus On The Tropics.

    Get PDF
    In this paper, we summarize the four main ice nucleating aerosol types: mineral dusts, bioaerosols, soot, and glassy organics, with the aim of demonstrating the limitations in scientifi c literature regarding their ice nucleation properties. Because the tropics are largely associated with marine environments, such as the Atlantic, Pacifi c, and Indian Oceans, they are potential source of ice nuclei, and therefore ice clouds can form in regions of high convective uplift. As a result, these particles are able to infl uence both the planet’s radiative force and its hydrological cycle. Due to our limited understanding of these effects, we would like to encourage the scientifi c community to increase its efforts to study and characterize the tropical aerosol particles that may function as ice nuclei. Through such efforts, we may reduce uncertainties in climate predictions, and improve our understanding of global warming in the hopes of fi nding potential solutions to these issues

    Single particle characterization using the soot particle aerosol mass spectrometer (SP-AMS)

    Get PDF
    Understanding the impact of atmospheric black carbon (BC) containing particles on human health and radiative forcing requires knowledge of the mixing state of BC, including the characteristics of the materials with which it is internally mixed. In this study, we demonstrate for the first time the capabilities of the Aerodyne Soot-Particle Aerosol Mass Spectrometer equipped with a light scattering module (LS-SP-AMS) to examine the mixing state of refractory BC (rBC) and other aerosol components in an urban environment (downtown Toronto). K-means clustering analysis was used to classify single particle mass spectra into chemically distinct groups. One resultant cluster is dominated by rBC mass spectral signals (C+1 to C+5) while the organic signals fall into a few major clusters, identified as hydrocarbon-like organic aerosol (HOA), oxygenated organic aerosol (OOA), and cooking emission organic aerosol (COA). A nearly external mixing is observed with small BC particles only thinly coated by HOA ( 28% by mass on average), while over 90% of the HOA-rich particles did not contain detectable amounts of rBC. Most of the particles classified into other inorganic and organic clusters were not significantly associated with BC. The single particle results also suggest that HOA and COA emitted from anthropogenic sources were likely major contributors to organic-rich particles with low to mid-range aerodynamic diameter (dva). The similar temporal profiles and mass spectral features of the organic clusters and the factors from a positive matrix factorization (PMF) analysis of the ensemble aerosol dataset validate the conventional interpretation of the PMF results

    Characterizing the hygroscopicity of growing particles in the Canadian Arctic summer

    Get PDF
    The impact of aerosols on clouds is a well-studied, although still poorly constrained, part of the atmospheric system. New particle formation (NPF) is thought to contribute 40 %-80 % of the global cloud droplet number concentration, although it is extremely difficult to observe an air mass from NPF to cloud formation. NPF and growth occurs frequently in the Canadian Arctic summer atmosphere, although only a few studies have characterized the source and properties of these aerosols. This study presents cloud condensation nuclei (CCN) concentrations measured on board the CCGS Amundsen in the eastern Canadian Arctic Archipelago from 23 July to 23 August 2016 as part of the Network on Climate and Aerosols: Addressing Uncertainties in Remote Canadian Environments (NETCARE). The study was dominated by frequent ultrafine particle and/or growth events, and particles smaller than 100 nm dominated the size distribution for 92 % of the study period. Using kappa-Kohler theory and aerosol size distributions, the mean hygroscopicity parameter (kappa) calculated for the entire study was 0.12 (0.06-0.12, 25th-75th percentile), suggesting that the condensable vapours that led to particle growth were primarily slightly hygroscopic, which we infer to be organic. Based on past measurement and modelling studies from NETCARE and the Canadian Arctic, it seems likely that the source of these slightly hygroscopic, organic, vapours is the ocean. Examining specific growth events suggests that the mode diameter (D-max) had to exceed 40 nm before CCN concentrations at 0.99 % supersaturation (SS) started to increase, although a statistical analysis shows that CCN concentrations increased 13-274 cm(-3) during all ultrafine particle and/or growth times (total particle concentrations > 500 cm(-3 ), D-max < 100 nm) compared with background times (total concentrations < 500 cm(-3)) at SS of 0.26 %-0.99 %. This value increased to 25-425 cm(-3) if the growth times were limited to times when D-max was also larger than 40 nm. These results support past results from NETCARE by showing that the frequently observed ultrafine particle and growth events are dominated by a slightly hygroscopic fraction, which we interpret to be organic vapours originating from the ocean, and that these growing particles can increase the background CCN concentrations at SS as low as 0.26 %, thus pointing to their potential contribution to cloud properties and thus climate through the radiation balance.Peer reviewe

    Kinetic limitations in gas-particle reactions arising from slow diffusion in secondary organic aerosol

    Get PDF
    The potential for aerosol physical properties, such as phase, morphology and viscosity/diffusivity, to affect particle reactivity remains highly uncertain. We report here a study of the effect of bulk diffusivity of polycyclic aromatic hydrocarbons (PAHs) in secondary organic aerosol (SOA) on the kinetics of the heterogeneous reaction of particle-borne benzo[a]pyrene (BaP) with ozone. The experiments were performed by coating BaP-ammonium sulfate particles with multilayers of SOA formed from ozonolysis of α-pinene, and by subsequently investigating the kinetics of BaP loss via reaction with excess ozone using an aerosol flow tube coupled to an Aerodyne Aerosol Mass Spectrometer (AMS). All reactions exhibit pseudo-first order kinetics and are empirically well described by a Langmuir–Hinshelwood (L-H) mechanism. The results show that under dry conditions (RH 1 × 10^(−12) for dry (RH < 5%), 50% RH and 70% RH conditions, respectively. These results clearly indicate that slow diffusion of reactants through SOA coats under specific conditions can provide shielding from gas-phase oxidants, enabling the long-range atmospheric transport of toxic trace species, such as PAHs and persistent organic pollutants

    Enhancing non-refractory aerosol apportionment from an urban industrial site through receptor modelling of complete high time-resolution aerosol mass spectra

    Get PDF
    Receptor modelling was performed on quadrupole unit mass resolution aerosol mass spectrometer (Q-AMS) sub-micron particulate matter (PM) chemical speciation measurements from Windsor, Ontario, an industrial city situated across the Detroit River from Detroit, Michigan. Aerosol and trace gas measurements were collected on board Environment Canada’s CRUISER mobile laboratory. Positive matrix factorization (PMF) was performed on the AMS full particle-phase mass spectrum (PMFFull MS) encompassing both organic and inorganic components. This approach was compared to the more common method of analysing only the organic mass spectra (PMFOrg MS). PMF of the full mass spectrum revealed that variability in the non-refractory sub-micron aerosol concentration and composition was best explained by six factors: an amine-containing factor (Amine); an ammonium sulphate and oxygenated organic aerosol containing factor (Sulphate-OA); an ammonium nitrate and oxygenated organic aerosol containing factor (Nitrate-OA); an ammonium chloride containing factor (Chloride); a hydrocarbon like organic aerosol (HOA) factor; and a moderately oxygenated organic aerosol factor (OOA). PMF of the organic mass spectrum revealed three factors of similar composition to some of those revealed through PMFFull MS: Amine, HOA and OOA. Including both the inorganic and organic mass proved to be a beneficial approach to analysing the unit mass resolution AMS data for several reasons. First, it provided a method for potentially calculating more accurate sub-micron PM mass concentrations, particularly when unusual factors are present, in this case, an Amine factor. As this method does not rely on a priori knowledge of chemical species, it circumvents the need for any adjustments to the traditional AMS species fragmentation patterns to account for atypical species, and can thus lead to more complete factor profiles. It is expected that this method would be even more useful for HR-ToF-AMS data, due to the ability to better understand the chemical nature of atypical factors from high resolution mass spectra. Second, utilizing PMF to extract factors containing inorganic species allowed for the determination of extent of neutralization, which could have implications for aerosol parameterization. Third, subtler differences in organic aerosol components were resolved through the incorporation of inorganic mass into the PMF matrix. The additional temporal features provided by the inorganic aerosol components allowed for the resolution of more types of oxygenated organic aerosol than could be reliably re-solved from PMF of organics alone. Comparison of findings from the PMFFull MS and PMFOrg MS methods showed that for the Windsor airshed, the PMFFull MS method enabled additional conclusions to be drawn in terms of aerosol sources and chemical processes. While performing PMFOrg MS can provide important distinctions between types of organic aerosol, it is shown that including inorganic species in the PMF analysis can permit further apportionment of organics for unit mass resolution AMS mass spectra

    Background Free‐Tropospheric Ice Nucleating Particle Concentrations at Mixed‐Phase Cloud Conditions

    Get PDF
    Clouds containing ice are vital for precipitation formation and are important in determining the Earths radiative budget. However primary formation of ice in clouds is not fully understood. In the presence of ice nucleating particles (INPs), the phase change to ice is promoted, but identification and quantification of INPs in a natural environment remains challenging because of their low numbers. In this paper we quantify INP number concentrations in the free troposphere (FT) as measured at the High Altitude Research Station Jungfraujoch during the years 2014 to 2017. INPs were measured at conditions relevant for mixed-phase cloud formation at 241 to 242 K

    The Essential Role for Laboratory Studies in Atmospheric Chemistry

    Get PDF
    Laboratory studies of atmospheric chemistry characterize the nature of atmospherically relevant processes down to the molecular level, providing fundamental information used to assess how human activities drive environmental phenomena such as climate change, urban air pollution, ecosystem health, indoor air quality, and stratospheric ozone depletion. Laboratory studies have a central role in addressing the incomplete fundamental knowledge of atmospheric chemistry. This article highlights the evolving science needs for this community and emphasizes how our knowledge is far from complete, hindering our ability to predict the future state of our atmosphere and to respond to emerging global environmental change issues. Laboratory studies provide rich opportunities to expand our understanding of the atmosphere via collaborative research with the modeling and field measurement communities, and with neighboring disciplines

    Measurement report : Introduction to the HyICE-2018 campaign for measurements of ice-nucleating particles and instrument inter-comparison in the Hyytiala boreal forest

    Get PDF
    The formation of ice particles in Earth's atmosphere strongly influences the dynamics and optical properties of clouds and their impacts on the climate system. Ice formation in clouds is often triggered heterogeneously by ice-nucleating particles (INPs) that represent a very low number of particles in the atmosphere. To date, many sources of INPs, such as mineral and soil dust, have been investigated and identified in the low and mid latitudes. Although less is known about the sources of ice nucleation at high latitudes, efforts have been made to identify the sources of INPs in the Arctic and boreal environments. In this study, we investigate the INP emission potential from high-latitude boreal forests in the mixed-phase cloud regime. We introduce the HyICE-2018 measurement campaign conducted in the boreal forest of Hyytiala, Finland, between February and June 2018. The campaign utilized the infrastructure of the Station for Measuring Ecosystem-Atmosphere Relations (SMEAR) II, with additional INP instruments, including the Portable Ice Nucleation Chamber I and II (PINC and PINCii), the SPectrometer for Ice Nuclei (SPIN), the Portable Ice Nucleation Experiment (PINE), the Ice Nucleation SpEctrometer of the Karlsruhe Institute of Technology (INSEKT) and the Microlitre Nucleation by Immersed Particle Instrument (mu L-NIPI), used to quantify the INP concentrations and sources in the boreal environment. In this contribution, we describe the measurement infrastructure and operating procedures during HyICE-2018, and we report results from specific time periods where INP instruments were run in parallel for inter-comparison purposes. Our results show that the suite of instruments deployed during HyICE-2018 reports consistent results and therefore lays the foundation for forthcoming results to be considered holistically. In addition, we compare measured INP concentrations to INP parameterizations, and we observe good agreement with the Tobo et al. (2013) parameterization developed from measurements conducted in a ponderosa pine forest ecosystem in Colorado, USA.Peer reviewe
    • 

    corecore