39 research outputs found

    Mapping Local Cytosolic Enzymatic Activity in Human Esophageal Mucosa with Porous Silicon Nanoneedles

    Get PDF
    Porous silicon nanoneedles can map Cathepsin B activity across normal and tumor human esophageal mucosa. Assembling a peptide‐based Cathepsin B cleavable sensor over a large array of nano­needles allows the discrimination of cancer cells from healthy ones in mixed culture. The same sensor applied to tissue can map Cathepsin B activity with high resolution across the tumor margin area of esophageal adenocarcinoma. [Image: see text

    Fundoplication to preserve allograft function after lung transplant: Systematic review and meta-analysis

    Get PDF
    Background: ARS has been adopted in select patients with lung transplant for the past 2 decades inmany centers. Outcomes have been reported sporadically. No pooled analysis of retrospective series has been performed. Objective: This review and pooled analysis sought to demonstrate objective evidence of improved graft function in lung transplant patients undergoing antireflux surgery (ARS). Methods: In accordance with Meta-analyses of Observational Studies in Epidemiology guidelines, a search of PubMed Central, Medline, Google Scholar, and Cochrane Library databases was performed. Articles documenting spirometry data pre- and post-ARS were reviewed and a random-effects model meta-analysis was performed on forced expiratory volume in 1 second (FEV1) values and the rate of change of FEV1. Results: Six articles were included in the meta-analysis. Regarding FEV1 before and after ARS, we observed a small increase in FEV1 values in studies reporting raw values (2.02 ± 0.89 L/1 sec vs 2.14 ± 0.77 L/1 sec; n = 154) and % of predicted (77.1% ± 22.1% vs 81.2% ± 26.95%; n = 45), with a small pooled Cohen d effect size of 0.159 (P = .114). When considering the rate of change of FEV1 we observed a significant difference in pre-ARS compared with post-ARS (–2.12 ± 2.76 mL/day vs +0.05 ± 1.19 mL/day; n = 103). There was a pooled effect size of 1.702 (P = .013), a large effect of ARS on the rate of change of FEV1 values. Conclusions: This meta-analysis of retrospective observational studies demonstrates that ARS might benefit patients with declining FEV1, by examining the rate of change of FEV1 during the pre- and postoperative periods

    Prospective validation of microRNA signatures for detecting pancreatic malignant transformation in endoscopic-ultrasound guided fine-needle aspiration biopsies

    Get PDF
    Background: Pancreatic ductal adenocarcinoma (PDAC) is a lethal disease. Novel biomarkers are required to aid treatment decisions and improve patient outcomes. MicroRNAs (miRNAs) are potentially ideal diagnostic biomarkers, as they are stable molecules, and tumour and tissue specific.Results: Logistic regression analysis revealed an endoscopic-ultrasound fine-needle aspiration (EUS-FNA) 2-miRNA classifier (miR-21 + miR-155) capable of distinguishing benign from malignant pancreatic lesions with a sensitivity of 81.5% and a specificity of 85.7% (AUC 0.930). Validation FNA cohorts confirmed both miRNAs were overexpressed in malignant disease, while circulating miRNAs performed poorly.Methods: Fifty-five patients with a suspicious pancreatic lesion on cross-sectional imaging were evaluated by EUS-FNA. At echo-endoscopy, the first part of the FNA was sent for cytological assessment and the second part was used for total RNA extraction. Candidate miRNAs were selected after careful review of the literature and expression was quantified by qRT-PCR. Validation was performed on an independent cohort of EUS-FNAs, as well as formalin-fixed paraffin embedded (FFPE) and plasma samples.Conclusions: We provide further evidence for using miRNAs as diagnostic biomarkers for pancreatic malignancy. We demonstrate the feasibility of using fresh EUS-FNAs to establish miRNA-based signatures unique to pancreatic malignant transformation and the potential to enhance risk stratification and selection for surgery

    De novo lipogenesis alters the phospholipidome of esophageal adenocarcinoma

    Get PDF
    The incidence of esophageal adenocarcinoma is rising, survival remains poor, and new tools to improve early diagnosis and precise treatment are needed. Cancer phospholipidomes quantified with mass spectrometry imaging can support objective diagnosis in minutes using a routine frozen tissue section. However, whether mass spectrometry imaging can objectively identify primary esophageal adenocarcinoma is currently unknown and represents a significant challenge, as this microenvironment is complex with phenotypically similar tissue-types. Here we used desorption electrospray ionisation mass spectrometry imaging (DESI-MSI) and bespoke chemometrics to assess the phospholipidomes of esophageal adenocarcinoma and relevant control tissues. Multivariable models derived from phospholipid profiles of 117 patients were highly discriminant for esophageal adenocarcinoma both in discovery (area-under-curve = 0.97) and validation cohorts (AUC = 1). Among many other changes, esophageal adenocarcinoma samples were markedly enriched for polyunsaturated phosphatidylglycerols with longer acyl chains, with stepwise enrichment in pre-malignant tissues. Expression of fatty acid and glycerophospholipid synthesis genes was significantly upregulated, and characteristics of fatty acid acyls matched glycerophospholipid acyls. Mechanistically, silencing the carbon switch ACLY in esophageal adenocarcinoma cells shortened GPL chains, linking de novo lipogenesis to the phospholipidome. Thus, DESI-MSI can objectively identify invasive esophageal adenocarcinoma from a number of pre-malignant tissues and unveils mechanisms of phospholipidomic reprogramming. These results call for accelerated diagnosis studies using DESI-MSI in the upper gastrointestinal endoscopy suite as well as functional studies to determine how polyunsaturated phosphatidylglycerols contribute to esophageal carcinogenesis

    Imaging of esophageal lymph node metastases by desorption electrospray ionization mass spectrometry

    Get PDF
    Histopathological assessment of lymph node metastases (LNM) depends on subjective analysis of cellular morphology with inter-/intra-observer variability. In this study, LNM from esophageal adenocarcinoma was objectively detected using desorption electrospray ionization-mass spectrometry imaging (DESI-MSI). Ninety lymph nodes and their primary tumor biopsies from 11 esophago-gastrectomy specimens were examined and analyzed by DESI-MSI. Images from mass spectrometry and corresponding histology were co-registered and analyzed using multivariate statistical tools. The MSIs revealed consistent lipidomic profiles of individual tissue types found within lymph nodes. Spatial mapping of the profiles showed identical distribution patterns as per the tissue types in matched immunohistochemistry images. Lipidomic profile comparisons of LNM versus the primary tumor revealed a close association in contrast to benign lymph node tissue types. This similarity was used for the objective prediction of LNM in mass spectrometry images utilizing the average lipidomic profile of esophageal adenocarcinoma. The multivariate statistical algorithm developed for LNM identification demonstrated a sensitivity, specificity, positive predictive value and negative predictive value of 89.5, 100, 100 and 97.2 per-cent, respectively, when compared to gold-standard immunohistochemistry. DESI-MSI has the potential to be a diagnostic tool for peri-operative identification of LNM and compares favorably with techniques currently used by histopathology experts

    Characterisation of bioenergetic pathways and related regulators by multiple assays in human tumour cells

    Get PDF
    Background: Alterations in cellular metabolism are considered as hallmarks of cancers, however, to recognize these alterations and understand their mechanisms appropriate techniques are required. Our hypothesis was to determine whether dominant bioenergetic mechanism may be estimated by comparing the substrate utilisation with different methods to detect the labelled carbon incorporation and their application in tumour cells. Methods: To define the bioenergetic pathways different metabolic tests were applied: (a) measuring CO2 production from [1-14C]-glucose and [1-14C]-acetate; (b) studying the effect of glucose and acetate on adenylate energy charge; (c) analysing glycolytic and TCA cycle metabolites and the number of incorporated 13C atoms after [U-13C]-glucose/[2-13C]-acetate labelling. Based on [1-14C]-substrate oxidation two selected cell lines out of seven were analysed in details, in which the highest difference was detected at their substrate utilization. To elucidate the relevance of metabolic characterisation the expression of certain regulatory factors, bioenergetic enzymes, mammalian target of rapamycin (mTOR) complexes (C1/C2) and related targets as important elements at the crossroad of cellular signalling network were also investigated. Results: Both [U-13C]-glucose and [1-14C]-substrate labelling indicated high glycolytic capacity of tumour cells. However, the ratio of certain 13C-labelled metabolites showed detailed metabolic differences in the two selected cell lines in further characterisation. The detected differences of GAPDH, β-F1-ATP-ase expression and adenylate energy charge in HT-1080 and ZR-75.1 tumour cells also confirmed the altered metabolism. Moreover, the highly limited labelling of citrate by [2-13C]-acetate-representing a novel functional test in malignant cells-confirmed the defect of TCA cycle of HT-1080 in contrast to ZR-75.1 cells. Noteworthy, the impaired TCA cycle in HT-1080 cells were associated with high mTORC1 activity, negligible protein level and activity of mTORC2, high expression of interleukin-1β, interleukin-6 and heme oxygenase-1 which may contribute to the compensatory mechanism of TCA deficiency. Conclusions: The applied methods of energy substrate utilisation and other measurements represent simple assay system using 13C-acetate and glucose to recognize dominant bioenergetic pathways in tumour cells. These may offer a possibility to characterise metabolic subtypes of human tumours and provide guidelines to find biomarkers for prediction and development of new metabolism related targets in personalized therapy. © 2016 Jeney et al

    Elective Cancer Surgery in COVID-19-Free Surgical Pathways During the SARS-CoV-2 Pandemic: An International, Multicenter, Comparative Cohort Study.

    Get PDF
    PURPOSE: As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19-free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS: This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19-free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS: Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19-free surgical pathways. Patients who underwent surgery within COVID-19-free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19-free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score-matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19-free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION: Within available resources, dedicated COVID-19-free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks

    Elective cancer surgery in COVID-19-free surgical pathways during the SARS-CoV-2 pandemic: An international, multicenter, comparative cohort study

    Get PDF
    PURPOSE As cancer surgery restarts after the first COVID-19 wave, health care providers urgently require data to determine where elective surgery is best performed. This study aimed to determine whether COVID-19–free surgical pathways were associated with lower postoperative pulmonary complication rates compared with hospitals with no defined pathway. PATIENTS AND METHODS This international, multicenter cohort study included patients who underwent elective surgery for 10 solid cancer types without preoperative suspicion of SARS-CoV-2. Participating hospitals included patients from local emergence of SARS-CoV-2 until April 19, 2020. At the time of surgery, hospitals were defined as having a COVID-19–free surgical pathway (complete segregation of the operating theater, critical care, and inpatient ward areas) or no defined pathway (incomplete or no segregation, areas shared with patients with COVID-19). The primary outcome was 30-day postoperative pulmonary complications (pneumonia, acute respiratory distress syndrome, unexpected ventilation). RESULTS Of 9,171 patients from 447 hospitals in 55 countries, 2,481 were operated on in COVID-19–free surgical pathways. Patients who underwent surgery within COVID-19–free surgical pathways were younger with fewer comorbidities than those in hospitals with no defined pathway but with similar proportions of major surgery. After adjustment, pulmonary complication rates were lower with COVID-19–free surgical pathways (2.2% v 4.9%; adjusted odds ratio [aOR], 0.62; 95% CI, 0.44 to 0.86). This was consistent in sensitivity analyses for low-risk patients (American Society of Anesthesiologists grade 1/2), propensity score–matched models, and patients with negative SARS-CoV-2 preoperative tests. The postoperative SARS-CoV-2 infection rate was also lower in COVID-19–free surgical pathways (2.1% v 3.6%; aOR, 0.53; 95% CI, 0.36 to 0.76). CONCLUSION Within available resources, dedicated COVID-19–free surgical pathways should be established to provide safe elective cancer surgery during current and before future SARS-CoV-2 outbreaks
    corecore