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Abstract  1 

 2 

The incidence of esophageal adenocarcinoma is rising, survival remains poor, and 3 

new tools to improve early diagnosis and precise treatment are needed. Cancer 4 

phospholipidomes quantified with mass spectrometry imaging can support objective 5 

diagnosis in minutes using a routine frozen tissue section. However, whether mass 6 

spectrometry imaging can objectively identify primary esophageal adenocarcinoma is 7 

currently unknown and represents a significant challenge, as this microenvironment 8 

is complex with phenotypically similar tissue-types. Here we used desorption 9 

electrospray ionisation mass spectrometry imaging (DESI-MSI) and bespoke 10 

chemometrics to assess the phospholipidomes of esophageal adenocarcinoma and 11 

relevant control tissues. Multivariable models derived from phospholipid profiles of 12 

117 patients were highly discriminant for esophageal adenocarcinoma both in 13 

discovery (area-under-curve = 0.97) and validation cohorts (AUC = 1). Among many 14 

other changes, esophageal adenocarcinoma samples were markedly enriched for 15 

polyunsaturated phosphatidylglycerols with longer acyl chains, with stepwise 16 

enrichment in pre-malignant tissues. Expression of fatty acid and 17 

glycerophospholipid synthesis genes was significantly upregulated, and 18 

characteristics of fatty acid acyls matched glycerophospholipid acyls. 19 

Mechanistically, silencing the carbon switch ACLY in esophageal adenocarcinoma 20 

cells shortened GPL chains, linking de novo lipogenesis to the phospholipidome. 21 

Thus, DESI-MSI can objectively identify invasive esophageal adenocarcinoma from 22 

a number of pre-malignant tissues and unveils mechanisms of phospholipidomic 23 

reprogramming. These results call for accelerated diagnosis studies using DESI-MSI 24 

in the upper gastrointestinal endoscopy suite as well as functional studies to 25 



 4 

determine how polyunsaturated phosphatidylglycerols contribute to esophageal 1 

carcinogenesis. 2 

 3 

Word count: 232/250  4 



 5 

Introduction 1 

 2 

Esophageal cancer is the eighth most common malignancy worldwide causing 3 

approximately 500,000 deaths per annum(1). The predominant subtype in Western countries 4 

is esophageal adenocarcinoma (EA), which is linked to esophageal acid reflux. The normal 5 

lower esophageal squamous epithelium is replaced with an intestinal-type columnar mucosa 6 

(“Barrett’s metaplasia”), which can acquire dysplastic changes leading to EA(2). It is often 7 

detected at an advanced stage, with approximately 30% of patients amenable to curative 8 

treatment(3). Despite improvements in multi-modality treatment, five-year survival after 9 

treatment with curative intent remains 30-35%, and all-stage 5-yr survival is 14%(3). 10 

Therefore, new tools to facilitate early diagnosis and effective treatment are needed. 11 

 12 

Despite extensive investigation of how metabolism contributes to cancer(4–6), lipids - which 13 

constitute 70% of the human metabolome - are relatively understudied(7). Most lipids are 14 

sequestered in bilayer membranes as glycerophospholipids (GPLs). There are six GPL 15 

classes based on their head moiety, with further variation in acyl lengths and desaturations. 16 

These features convey diversity to the GPL profile(8), which is often altered in cancer 17 

states(9–12). Their chemical and physical stability makes them attractive for biomarker 18 

studies. Functionally, GPL diversity impacts membrane characteristics and cellular 19 

signalling. For example, the GPLs phosphatidylinositols (PIs) mediate phosphatidylinositol-3 20 

kinase (PI3K) signalling, which is one of the most commonly deregulated pathways in 21 

EA(13), whereas phosphatidylglycerols (PGs) have potent and contrasting effects on 22 

squamous cells’ proliferation(14). Thus, measuring GPLs may provide diagnostic biomarkers 23 

with actionable therapeutic potential; however, species composition must be determined 24 

precisely. 25 

 26 

Tissue phospholipidomics using traditional liquid chromatography mass spectrometry was 27 

inherently limited, as even small homogenates cannot eliminate non-target cell 28 



 6 

contamination in complex microenvironments like cancer(15),(16). Mass spectrometry 1 

imaging (MSI)(17) addresses this, by providing spatially-resolved lipid analysis using tissue 2 

sections. This allows accurate phospholipid profiles to be derived from histologically pure 3 

areas. Desorption electrospray ionisation-MSI offers advantages over MSI approaches, due 4 

to range of lipids detected, minimal sample preparation, performance in ambient conditions 5 

and non-destruction of analysed tissue sections allowing for comparative histological 6 

analysis(18). Typically hundreds of pixels from several sampling zones per specimen are 7 

collected, such that each phospholipid profile comprises tens of thousands of mass spectra 8 

across a patient cohort. The clinical potential of this technique has been described, for 9 

example to assess surgical resection margins for breast(11), brain(19) and prostate(20) 10 

cancers. In lung cancer, GPL profiling has highlighted new therapeutic approaches(21). 11 

Previously, we showed that phospholipidomics could differentiate metastatic EA from lymph 12 

node tissue(22). However, the phospholipid profile of primary EA is currently unknown, and 13 

represents a significant challenge to MSI as the complexity of this microenvironment is 14 

extra-ordinary and neighbouring non-malignant tissues can be phenotypically similar. 15 

 16 

Here we used DESI-MSI to compare the normal squamous and EA GPL profile, using paired 17 

samples from surgical specimens. Next we assessed the evolution of the EA GPL profile, by 18 

comparing normal, inflamed, metaplastic, dysplastic, and neoplastic cell types, which also 19 

served as an external validation cohort. We then investigated the mechanistic basis for 20 

these GPL signatures, by describing the corresponding fatty acid pool and genetic 21 

framework. Finally, we linked de novo lipogenesis to EA GPL characteristics, by silencing a 22 

deregulated lipogenic gene and assessing the phospholipidomic changes in vitro. 23 

  24 
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Methods 1 

Patients 2 

Approval for the study was obtained via National Research Ethics Service (Ref: 3 

04/Q0403/119) and Imperial College Healthcare Tissue Bank institutional review boards 4 

(Project R14121), adhering to Declaration of Helsinki principles. Written informed consent 5 

was taken from every participant prior to collecting samples.  Two independent cohorts were 6 

used, and the REMARK guidelines were followed for the recruitment of patients in this 7 

observational study(23). For Cohort 1, biopsies were collected from EA surgical specimens 8 

of consecutive patients undergoing treatment of curative intent at a single tertiary referral 9 

centre (St Mary’s Hospital, Imperial College NHS Trust, London) between April 2012 and 10 

August 2014. Samples were taken from macroscopically identified tumour and matched 11 

healthy esophageal epithelium (MHEE) 5cm away from the tumour. Squamous tissue was 12 

selected as the initial control given the intention to apply DESI-MSI for screening surgical 13 

resection margins for cancer. Also, the selection of control tissue and distance from the 14 

tumour followed our previous work in low molecular weight metabolites, which demonstrated 15 

field effects near esophageal cancers(24). For cohort 2, lower esophageal mucosal biopsies 16 

were accrued from patients undergoing diagnostic/therapeutic endoscopy suite at St. Mary’s 17 

Hospital. Tissue types were classified into healthy esophageal epithelium (HEE, i.e. from 18 

healthy volunteers rather than cancer-adjacent normal tissue), inflamed esophageal 19 

epithelium (IEE), Barrett’s metaplasia (BM), Barrett’s dysplasia (BD) or esophageal 20 

adenocarcinoma (EA) prior to any treatment. All samples were collected from within 5cm of 21 

the gastro-esophageal junction, apart from HEE, which was collected from between 15 and 22 

5 cm. These groups were selected to assess the stepwise differences in GPL profiles along 23 

the carcinogenic sequence of EA, and also to externally validate the findings of Cohort 1. 24 

The histology of adjacent samples was independently verified by two histopathologists (R.G. 25 

and G.P.) with a specialist interest in upper gastro-intestinal cancer. 26 

 27 



 8 

Exclusion criteria for both cohorts included patients with esophageal squamous cell 1 

carcinoma, malignancy associated with any other site in the body, other gastrointestinal tract 2 

pathology, liver disease and patients with signs/symptoms of acute infection. Demographic 3 

and clinical data including past medical history, drug history, chemotherapeutics, smoking 4 

status and alcohol intake history were recorded for all patients (see Supplementary Table 1 5 

& 2). Histopathological variables including tumor type/differentiation/grade and stage, 6 

presence of perineural/lymphovascular invasion and lymph nodal metastases were recorded 7 

for patients in Cohort 1 (see Supplementary Table 1). 8 

 9 

Desorption electrospray mass spectrometry imaging 10 
 11 

Sample processing and acquisition of mass spectra 12 

 13 

A schematic of the DESI-MSI workflow is given in Figure 1A. A fine stream of an ionised 14 

solvent (typically methanol and water) is “sprayed” onto a cryosectioned tissue specimen, 15 

which subsequently liberates ionised target species from the sample (often lipids). These are 16 

aspirated into a mass spectrometer, which generates a mass spectrum for this particular 17 

location on the section (“pixel”). An automatic stage controller then moves to the next pixel, 18 

and a mass spectrometry “image” is built up. Tissue destruction is minimal, so the post-19 

DESI-MSI section can be histologically stained, co-registered with the mass spectrometry 20 

image, and used to supervise discriminative analysis. Complex multivariate statistics are 21 

then needed to process the large datasets that result from the highly resolved mass spectra, 22 

from a large number of pixels, across several sampling regions, across several patients, in 23 

order to build up a metabolomic profile.  24 

 25 

All clinical tissue samples were snap frozen in liquid nitrogen immediately upon 26 

disconnection.  Samples were stored at -80oC for no longer than 1 month prior to cryo-27 



 9 

sectioning at 15µm and mounting on glass slides. All specimen processing was performed 1 

below -30oC.  Clinical sample analysis was performed in random order, constant 2 

instrument/environmental settings and in a brief time frame to avoid any batch effect 3 

influencing the results. DESI-MSI analysis was performed using an Exactive Fourier-4 

Transform Orbitrap mass spectrometer (Thermo Fisher Scientific Inc., Bremen, Germany) 5 

controlled by XCalibur 2.1 software. Mass spectrometry data was acquired in negative ion 6 

mode in the m/z 150-1000 range. The spatial resolution for the imaging experiments was set 7 

to 75µm, corresponding to X/Y dimensions of the image pixels. Full protocol for optimisation, 8 

precision measurements and spectra acquisition are reported in a previous study(25). 9 

 10 

Tissue sections were post-stained for histological confirmation and direct comparison was 11 

made with the mass spectrometry image (MSI) for cell/tissue specific data extraction. All 12 

samples were stained with H&E prior to digital imaging with a high-resolution digital 13 

microscope (NanoZoomer 2.0-HT digital slide scanner) and assessed by two blinded, 14 

consultant histopathologist for histological mapping of cell/tissue types within the specimens.  15 

 16 

Tissue specific mass spectra extraction 17 

 18 

Raw mass spectrometric data was converted to imzML format via imzML Converter (version 19 

1.0.5)(26) and imported into MATLAB (R2014a) for feature extraction, pre-processing and 20 

data analysis using an in-house bio-informatics platform(27). Each MSI is composed of 21 

multiple pixels representing individual mass spectra. In order to extract relevant mass 22 

spectra of specific cell/tissue types the MSI must be compared to its matched histological 23 

image. As previously described, the histological image was assessed by an independent 24 

consultant histopathologist for identification and spatial mapping of specific cell/tissue types, 25 

which was recorded on digital imaging software (Nanozoomer, Hamamatsu). 26 

 27 
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The histological and MSI image were then aligned using an in-house–developed automated 1 

affine image transformation (translation, rotation, and scaling) algorithmic based on a 2 

gradient descent optimization approach(27). The co-registration of the matched histology 3 

and MSI permitted selection of mass spectra of specific tissue types by highlighting a 4 

corresponding two-dimensional area on the matched histology image. This process was 5 

repeated for each sample to extract mass spectra of each specific tissue type to populate a 6 

composite database. Within the database the mass spectra of each tissue type was also 7 

categorized with respect to its sample of origin in order to perform inter-sample 8 

comparisons. 9 

 10 

Data Pre-processing 11 

 12 

Negative ion mode data was acquired between the 150-1000 m/z range.  Analysis of 13 

glycerophospholipids was performed on the 600-1000 m/z range.  Analysis of fatty acids 14 

was performed on the 150-400 m/z range. Subsequent data pre-processing of the raw data 15 

was then performed on the selected m/z range of interest. Despite daily mass calibration of 16 

the Exactive Mass Spectrometer, non-linear mass shifts of common peaks were evident 17 

across multiple samples. To perform comparative analysis of multiple samples these mass 18 

shifts were corrected by means of an in-house peak alignment algorithm (dynamic 19 

programming, 8ppm matched)(28). To account for differential lipid density owing to 20 

differences in cell morphology, spectra were normalised to the Total Ion Count. Therefore, 21 

the only differences were in the ratios of the spectral features (corresponding to lipids in this 22 

case) found within that mass range. The spectra were then de-noised; peaks were identified 23 

as noise and eliminated if present in <50% of representative mass spectra of any tissue 24 

type. Finally, the mean average of selected pixels of each tissue type within each patient 25 

sample was calculated and stored as a single data unit. 26 

 27 
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Statistics 1 

 2 

All analysis was conducted in Matlab, using a previously published toolbox (27). To illustrate 3 

the dataset in reduced dimensional space, principal components analysis was initially used 4 

as the unsupervised technique. As described, each tissue type from each sample was 5 

average across several sampling regions, such that each point indicated one tissue type 6 

from one sample.  The supervised approach was recursive maximum margin criterion, and 7 

internally cross-validated models were generated using k-fold/leave one out cross validation. 8 

Misclassifications were visualised using confusion matrices. GPL/fatty acid annotations were 9 

made using LipidMAPS(30), after exclusion of isotopologues. The mean intensity values of 10 

lipids in different tissue subclasses (e.g. cancer versus proximal healthy epithelium) were 11 

compared by log2 transformed mean fold change. Lipid intensities between tissue 12 

subclasses were compared for statistically significant differences by ANOVA, with p-values 13 

adjusted to q values with a false discovery rate of 0.001, to reduce multiplicity error. Overall 14 

Class/Saturation/Acyl chain length comparisons of GPL between tissues were compared 15 

using ANOVA with Tukey post-hoc analysis. Further explanation of the statistical approach 16 

can be found in the Supplementary Methods. 17 

 18 

Quantitative reverse transcriptase polymerase chain reaction 19 

 20 

The MIQE guidelines were followed. Endoscopic biopsies (2-3 each) of EA and MHEE were 21 

collected as for DESI-MSI (replicate samples of Cohort 1). The samples were mounted in 22 

OCT, flank cryosectioned, and microdissected to achieve a target cellularity of >90%. The 23 

OCT was trimmed and the sample homogenised in Trizol (ThermoLIfe) using a three-step 24 

protocol involving (i) a hand-held oscillating pestle (ii) 30 seconds steel bead-beating (iii) 25 

passage of the homogenate through a Qiashredder (Qiagen). This optimised protocol was 26 

necessary to acquire adequate yield (>50ng) from small squamous samples while 27 



 12 

maintaining RNA integrity (RIN > 7). RNA was then fractionated in according the Trizol 1 

instructions, and then additionally purified using RNEasy columns, with an extra wash step 2 

with both RW1 and RPE buffers. cDNA was made using SuperScript III (ThermoLIfe) and 3 

quantified using PowerSybr master mix and AB7900 thermal cycler all used according to the 4 

manufacturers’ instructions. Controls without template did not amplify. GAPDH was selected 5 

as the internal control gene as this was the most stable across an initial run of 10 samples. 6 

Oligonucleotide details are provided in the Supplementary Methods. 7 

 8 

 9 

  
Cell culture and transfection 10 

 11 

The FLO1 EAC cell line was purchased from ECACC (Public Health England) at the start of 12 

the study, who had authenticated the line using short tandem repeat profiling. Cultures were 13 

mycoplasma tested every month (last tested 10th January 2020), and all experiments were 14 

conducted within 10 passages of the original stock. Cultures were established in conditions 15 

recommended by the accompanying literature. For RNA silencing experiments, cells were 16 

seeded onto glass cover-slips and transiently transfected with an ACLY-targeting siRNA, or 17 

non-targeting siRNA (“ControlScramble”, Silencer Select, Ambion, control RNA 1), or water 18 

(“ControlVector”), using oligofectamine (Life) according to the manufacturer’s instructions.  19 

After 48 hours, cells were washed twice in 150mM ammonium acetate, and snap frozen on 20 

the cover slip prior to direct DESI-MSI.  Silencing efficiency was checked using 21 

immunoblotting of replicate wells as previously described (31), using the ACLY primary 22 

antibody 4223 (Cell Signalling Technologies). Selection of siRNA was based on sequence 23 

alignment to minimize off-target effects. 24 

 25 
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Immunohistochemistry 1 

 2 

The expression of the key enzymes involved in the de novo lipogenesis pathway (ACLY, 3 

ACACA, FASN, SCD and ELOVL1) were assessed in EA and MHEE in twenty patients from 4 

Cohort 1. Fresh tissue samples adjacent to those taken for DESI-MSI and qPCR were fixed 5 

in formalin and mounted in wax. After sectioning, specimens were dewaxed, hydrated, and 6 

retrieved in Bond Epitope Retrieval Solution 1 for 20 minutes or Solution 2 for 40 minutes at 7 

100 oC. Peroxidases were blocked, and the specimens were incubated with optimised 8 

concentrations of antibodies for 30-120 minutes (primary antibody details are in the 9 

Supplementary Methods). Primary antibody binding was visualised using Bond Polymer 10 

Refine Detection (DS9800, Leica). All staining procedures were carried out on a Leica Bond 11 

Autostainer. 12 

 13 

Immunoreactivity scoring was independently undertaken by two histopathologists (R.G. and 14 

G.P.). The analysis was confined to cancer cells in the tumour samples versus squamous 15 

cells in the normal esophageal mucosa. The H-score method was used: score 0, 1, 2, 3 for 16 

intensity (negative, weak, moderate, and strong), multiplied by the percentage of staining 17 

cells, out of a maximum of 300. Median scores were calculated for the cancer and healthy 18 

mucosal groups for each lipogenic enzyme and compared by Mann-Witney U test with a P 19 

value <0.05 to define statistical significance. 20 

 21 

  22 
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Results 1 

 2 

1. The GPL signature of esophageal adenocarcinoma 3 

 4 

DESI-MSI was able to distinguish the tissue types within the complex EA microenvironment 5 

(see Figure 1B). A representative analysis is provided in Figure 1B-F, demonstrating 6 

differentiation between Barrett’s metaplasia, Barrett’s dysplasia and smooth muscle within a 7 

single section. Tissue architecture was preserved (Figure 1B). A multivariable model derived 8 

from across the GPL mass range (m/z 600 – 1000) segregated these groups in reduced 9 

dimensional space (Figure 1C,D). Specific discriminating lipids could be quantitatively 10 

visualised. For example, PI 34:1 was greatly enriched in Barrett’s cells compared to adjacent 11 

smooth muscle, and most greatly in dysplastic Barrett’s (m/z 835.5342, P = 3.1x10-32, see 12 

Figure 1E,F).    13 

 14 

The glycerophospholipid signature of esophageal adenocarcinoma was characterised using 15 

two cohorts. Initially (Cohort 1), paired surgical resection biopsies (EA and matched healthy 16 

esophageal epithelium, MHEE) from 33 consecutive patients were profiled for GPL 17 

differences using DESI-MSI. This sampling approach was selected as the intended 18 

application was for operative margin analysis, and to overcome regional metabolomic 19 

differences in the tumour by sampling a larger specimen. Next a second cohort was sampled 20 

using endoscopic biopsies. This allowed specimens to be acquired from healthy volunteers 21 

and patients with Barrett’s metaplasia/dysplasia. It also allowed us to validate findings from 22 

the first cohort, investigate the performance of the technique on small specimens, and 23 

demonstrate the second clinical application of facilitated diagnosis in the endoscopy suite. 24 

  25 
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 1 

Cohort 1: Discovery 2 

 3 

The analytical pipeline calculated average mass spectra for each patient, by synthesising 4 

data within and between histologically verified sampling zones. Typically, for each specimen, 5 

10-15 zones with ~100-200 pixels each were sampled (one pixel = one mass spectra), such 6 

that each phospholipidome represented at least 10,000 mass spectra. The demographics 7 

and case characteristics of this cohort of patients are included in Supplementary Table 1. 8 

 9 

Unsupervised multivariate analysis of mass spectra in the m/z 600-1000 range 10 

demonstrated clear segregation between EA and MHEE (Figure 2A). Separation was 11 

apparent in the first component of the PCA, which explained 22.5% of the variance. This 12 

separation was more pronounced on supervised analysis (Figure 2B). After internal cross 13 

validation, the model correctly classified 93.9% of EA and MHEE (see Figure 2C and 14 

Supplementary Figure 1A), with two EA samples were incorrectly classified. The area-under-15 

the-receiver-operated-characteristic curve (AUC) was 0.97 (see Supplementary Figure 1B).  16 

 17 

A total of 192 GPLs were identified, with disparate abundances throughout the mass range 18 

(see Supplementary Figure 1C). In MHEE, phosphatidylethanolamines (PEs) and 19 

phosphatidylinositols (PIs) were the most abundant groups of GPLs, followed by 20 

phosphatidylserines (PSs), phosphatidylglycerols (PGs), and phosphatidic acids (PAs) (see 21 

Figure 2D).  In EA there were significantly more PGs (ANOVA with Tukey, P<0.0001) and 22 

less PAs (P<0.05) and PEs (P<0.001), compared to MHEE (see Figure 2D).  23 

 24 

The predominant GPL chain lengths had even numbers of carbon (34, 36, 38, and 40, i.e. 25 

various combinations of the C16:x, C18:x, and C20:x fatty acids, see Figure 2E). Compared 26 

to MHEE, there was a tendency towards longer acyl chain lengths with significantly more EA 27 

species with 37 (P<0.05), 39 (P<0.01), 40 (P<0.0001), 42 (P<0.01), 43 (P<0.0001) total acyl 28 



 16 

carbons, and significantly less 33 (P<0.001) and 34 (P<0.0001) total acyl carbons (see 1 

Figure 2E). Significant differences also existed in odd chain GPLs despite very low 2 

abundances. Across the tissue types, GPL most frequently had 1, 2, or 4 desaturations (see 3 

Figure 2F). There was significantly less saturated and monounsaturated acyls in EA 4 

compared to MHEE (P<0.01), and significantly more polyunsaturated acyls (P<0.01, see 5 

Figure 2F). The GPL species which most significantly contributed to PE/PG, total acyl length 6 

and total acyl desaturation class differences are provided in Figure 2G-I respectively.  7 

 8 

Specific differences in GPL species are provided in Supplementary Table 3, together with 9 

significantly different plasmalogens (i.e. monoacylglycerols) that were identified. Of the 20 10 

most significantly enriched GPL species (ANOVA with FDR), 10 were PGs, and 9 were 11 

enriched in EA by at least 2 log2(fold change). Additional validation of GPL annotation by 12 

MS2 (using the Exactive Orbitrap FTMS) was also possible for abundant molecular ions and 13 

is also provided in Supplementary Table 3. Examples of molecular and product ion scans 14 

are provided in Supplementary Figure 2A-H.  15 

 16 

 17 

Cohort 2: Validation and stepwise differences 18 

 19 

To validate these findings and understand if stepwise GPL differences occur with different 20 

stages of carcinogenesis (see Figure 3A), endoscopic biopsies from relevant patients were 21 

profiled using DESI-MSI with histopathological confirmation (HEE=33; IEE=8; BM=26; BD=7; 22 

EA=10). Supplementary Table 2 demonstrates the case characteristics of these patients; 23 

demographics were generally matched, except that the IEE cases were younger and acid-24 

suppression medication was higher in the BM group.  25 

 26 

To validate the findings from Cohort 1, the phospholipidomes of HEE and EA only were 27 

initially compared (see Supplementary Figure 3). Unsupervised multivariate analysis of mass 28 



 17 

spectra in the m/z 600-1000 range demonstrated separation of the data points along the first 1 

principal component (Supplementary Figure 3A), with clear differences throughout the mass 2 

range (Supplementary Figure 3B). The derived cross-validated RMMC model from these 3 

data correctly identified 100% of both tissue types (Supplementary Figure 3C), providing an 4 

AUROC of 1 (Supplementary Figure 3D). The leading difference was an abundance of PGs, 5 

with longer acyl chain and more desaturations. These data verify mass spectrometry 6 

imaging-based phospholipidomics as an accurate means of esophageal tissue recognition.  7 

 8 

To assess for stepwise differences through transformation, phospholipidomes of the 9 

remaining tissue types were added to the analysis. Unsupervised multivariate analysis of 10 

mass spectra in the m/z 600-1000 range also demonstrated separation of data points along 11 

the first principal component between HEE/IEE to BM/BD/EA (Figure 3B), suggesting the 12 

leading GPL profiles differences are due to the squamous or columnar phenotypes. 13 

Supervised analysis using recursive maximum margin criterion verified segregation based 14 

on tissue-of-origin (Figure 3C). However, there was further clustering of EA from BM/BD 15 

along the second component, associating further GPL reprogramming with transformation. 16 

Internal cross-validation incorrectly classified one squamous sample as columnar; however, 17 

BD was more frequently misclassified as either BM or EA (Figure 3D). 18 

 19 

The relative abundance of the 196 identified GPLs (m/z 600-1000 range) were compared, in 20 

terms of GPL class, acyl chain length and desaturations (Figure 3E-G). The relative quantity 21 

of PGs was higher in EA/BD/BM compared to HEE/IEE (P<0.01). The relative quantity of PIs 22 

was higher in BM/BD compared to HEE (P<0.05). The relatively quantity of PSs was lower in 23 

BM/BD/EA compared to HEE (P<0.0001) and IEE (P<0.05).  24 

 25 

Overall, acyl chain length was longer in BM/BD/EA, with significantly greater concentrations 26 

of 37, 38, and 40 carbon lengths, and less chains of 34 (Figure 3F). Acyl chains from 27 

BM/BD/EA had more desaturations, including significantly more having 4 or more double-28 



 18 

bonds, and significantly less having less than 2 (Figure 3G). In summary, GPLs of 1 

BM/BD/EA were enriched for PGs, and had longer acyl chains with more desaturations.  2 

 3 

To understand whether the GPL signature changes during progression to invasive cancer, 4 

we compared univariate PG characteristics between EA with BM, as this class was most 5 

enriched in cancer (Figure 3E and Supplementary Table 4).  Comparison of individual GPLs 6 

showed a significant increase in six long-chain polyunsaturated PGs (q<0.001), with PG 7 

(42:8) having the greatest increase (log2 fold change 6.1, ANOVA q = 8.6 x10-4). The other 8 

enriched PGs were PG (38:4), (38:5), (38:6), (40:5), and (40:6). 9 

 10 

 11 

2. Drivers of the EA glycerophospholipid signature 12 

 13 

The EA fatty acid profile 14 

 15 

Long chain fatty acids (FAs) of 12-26 carbon atoms are used to make GPL acyl chains in 16 

humans(8), so profiling the fatty acid pool may offer mechanistic insights into GPL acyl 17 

characteristics. The relative abundance of FAs found within the m/z 150-400 range were 18 

compared between EA and MHEE from Cohort 1. In unsupervised analysis using data from 19 

this mass range only, there was separation of the datapoints along the third component, 20 

which explained 8.9% of the variance (Figure 4A). This separation was more pronounced in 21 

supervised analysis (Figure 4B). Internal cross validation correctly classified 87.9% of EA 22 

and 90.9% of MHEE based on the FA profiles of the samples, with an AUC of 0.96 (Figure 23 

4C). FA acyls had significantly less 16-carbon chains in EA, and significantly more with 24 

longer chains (see Figure 4D,E). There were also significantly less saturated FA acyls in EA 25 

and significantly more desaturated acyls (see Figure 4F,G). 26 

 27 
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Genetic basis for GPL signature and contribution of de novo lipogenesis 1 

 2 

We hypothesised that GPL class-switch was driven by corresponding changes in gene 3 

expression. To test this hypothesis and generate candidates, we checked whether the 4 

KEGG GPL gene set was significantly altered in an archived transcriptomic dataset for EA 5 

and HEE (GSE 26886). Overall, EA was significantly enriched for GPL synthetic genes (see 6 

Figure 5A). To explore this further, we extracted mRNA from endoscopic biopsies of HEE 7 

and EA (n = 20 each), and quantified the expression of the most significantly altered 8 

candidates (see Figure 5B,C). Genes involved in PG synthesis, both by diacylglycerol 9 

phosphorylation and by lyso-PG acylation, were strongly enriched in EA compared to HEE 10 

(median fold change 2.5 (LPGAT) and 8.3 (PGS1) both P <0.001). The final synthetic step in 11 

PG metabolism – dimerization by CRLS1 to cardiolipin – was also upregulated in EA.  12 

 13 

We then checked whether genes involved in fatty acid synthesis were also deregulated in 14 

EA, using immunohistochemistry. This revealed robust EA expression of ACYL, FASN, 15 

EVOVL1, ACACA, and SCD that was at least equivalent to or greater than MHEE (see 16 

Figure 5D and Supplementary Figure 4A). Given that both the FA and GPL-acyl pools of EA 17 

had similar characteristics, and that genes involved in de novo lipogenesis were active in 18 

EA, it was hypothesised that de novo lipogenesis contributes to GPL acyl reprogramming. 19 

To test this, ACYL was silenced in FLO1 EA cells in vitro, and the resulting GPL signature 20 

was measured with DESI-MSI (Supplementary Figure 4B,C). ACYL channels carbon from 21 

the citrate cycle to acetyl CoA, thus providing the materials for acyl elongation, and is 22 

considered the first committed step in carbon shuttling to lipid anabolism(32). After 72h, 23 

there were significantly less GPLs with total acyl chain length of 40, and significantly more 24 

with 36 carbons (see Figure 5E). In summary, genes involved in GPL and de novo fatty acid 25 

synthesis were broadly enriched in EA, and impairing de novo lipogenesis in EA cells 26 

reverted GPL acyls toward a normal phenotype. 27 

  28 



 20 

Discussion 1 

 2 

In this study, we combined DESI-MSI lipidomic profiling with gene expression and 3 

perturbation studies to describe the GPL signature of EA, and its genetic basis. In two 4 

consecutive tissue series, sampled surgically and then endoscopically, multivariable models 5 

based derived from glycerophospholipid profiles were highly discriminant for EA compared 6 

to squamous and other control tissue (AUROC = 0.97 and 1). These results suggest DESI-7 

MSI can differentiate tissue-types in the malignant esophagus. Potential clinical applications 8 

include objective diagnosis and intra-operative margin assessment, especially given recent 9 

reports of rapid processing times(33).  10 

 11 

There was stepwise enrichment of PGs from normal to malignant tissue samples. Small 12 

concentrations of PGs can have potent effects on signalling(14,34,35), and PGs are usually 13 

at trace concentrations in mammalian tissues. In EA, PGs were the third most abundant 14 

GPL class, and how this significant increase in PG affects EA signalling requires further 15 

study. PGs are also the precursors of cardiolipins, which contribute to mitochondrial 16 

functionality and are frequently altered in cancer states(36),(37,38). PIs were particularly 17 

enriched in BM/BD. Given the interest in PI3K signalling to EA(39), this observation also 18 

warrants further investigation. The decrease in PS concentration may also be pro-19 

tumorigenic, as PS is a pro-apoptotic signalling molecule and a chemoattractant for 20 

macrophages and other immune cells(40). The significance of the slight decrease in PAs is 21 

less clear and may reflect increased lipase activity leading to PG and PI-enrichment. 22 

 23 

Acyl chains of EA GPLs had more desaturations and longer lengths, which probably reflect 24 

corresponding changes in the fatty acid pool. Genes which de novo synthesise, extend and 25 

desaturate fatty acids were strongly expressed in EA. In ovarian cancer, desaturases 26 

support cancer stemness and drive nf-κB signalling(41). Elongase activity and longer acyl 27 

chain lengths have been associated with a pro-cancer phenotype in lung(42,43), 28 



 21 

prostate(44) and breast cancers(45), implying that these characteristics confer ligand 1 

activity. Recently it was demonstrated that different PG species have contrasting effects on 2 

mouse skin keratinocyte proliferation(14). Similar species-specific effect has been 3 

demonstrated for cardiolipins(38). In the present dataset some EA lipids were up to 70x 4 

enriched, and an important next step with be the functional annotation of these 5 

discriminatory lipids within EA signalling.  6 

 7 

A strength of this paper was to begin to describe the underlying genetic and mechanistic 8 

basis of phospholipid reprogramming. Genes that control de novo lipogenesis and GPL 9 

synthesis were generally upregulated in EA, implying diversion to the final products of GPL 10 

metabolism (e.g. PIs, cardiolipins). Our finding that ACLY silencing reduces GPL chain 11 

length supports the hypothesis that these phenotypes are partly explained by acetyl CoA-12 

derived de novo lipogenesis and/or elongation (32), which is also supported by the observed 13 

robust expression of relevant lipogenic genes. Recently, mTORC2 was shown to be a 14 

master regulator of GPL synthesis, and is hyperactive in EA(46); however, the complete 15 

coordination of de novo lipogenesis is likely multifactorial. Additionally, the promoter of 16 

PTDSS1 is frequently mutated in EA(13), which suggests lipid reprogramming is selected in 17 

oncogenesis. It should be stressed that the ACLY experiment constitutes a technical and 18 

biological proof-of-principle, and a more comprehensive functional and mechanistic 19 

assessment of the effects of deregulated lipogenic genes is needed. 20 

 21 

Additional strengths include the use of complementary independent cohorts of patient 22 

samples to corroborate our lipidomic findings; transparent details of patient selection; the 23 

use of multiple control samples that where either matched to the tumour from the resection 24 

specimen (cohort 1) or matched in terms of demographics, medication and lifestyle factors 25 

(cohort 2); gold standard determination by two expert histopathologists and a robust 26 

methodology for data analysis and interpretation. This study’s limitations include the sample 27 

sizes of BM/BD and the single analytical platform for lipidomic profiling. Additionally, the 28 



 22 

present study did not assess the signatures of minor lipid classes such as cholesterols, 1 

ceramides and sphingomyelins. Future studies should use externally calibrated MS/MS 2 

validation, supported by molecular studies to test the relevance of the lipid species and 3 

genes on the overall phenotype. Specific inhibitors are available for lipogenic genes(47,48), 4 

and thus these findings may indicate new therapeutic avenues. 5 

 6 

In conclusion, DESI-MSI can objectively recognise adenocarcinoma in the esophagus. The 7 

EA phospholipidome is greatly enriched for long-chain, polyunsaturated PGs, and genetic 8 

studies suggest an orchestrated mechanism linked to de novo lipogenesis. The functional 9 

effect of the discriminatory lipids remains to be determined. 10 

 11 

 12 
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Figure Legends 1 

 2 
 3 

Figure 1: DESI-MSI workflow and representative section.  4 

A. Schematic of the DESI-MSI workflow B. Post-DESI-MSI haematoxylin and eosin stain of a 5 

representative esophageal biopsy section. Zoning for different tissue types demonstrated; 6 

esophageal smooth muscle (Muscle, pink); Barrett’s metaplasia (BM, green); Barrett’s 7 

dysplasia (BD, red). 100 µm C. Aligned false colour image of spatially-resolved total ion 8 

chromatogram D. Corresponding principal component analysis for (C) E. False colour image 9 

of PI 34:1 concentration across the tissue specimen (extracted ion chromatogram, m/z 10 

835.3542) F. Concentrations of PI 34:1 in the tissue types.  11 

 12 

Figure 2: Glycerophospholipid signatures of esophageal adenocarcinoma and 13 

matched healthy esophageal epithelium (Cohort 1).  14 

A. Principal components analysis (PCA) of averaged mass spectra (m/z 600-1000) of 15 

esophageal adenocarcinoma (EA, red) versus matched healthy esophageal epithelium 16 

(MHEE, green) of patients in Cohort 1 (each dot = averaged spectra from one tissue type 17 

from one patient; each patient provided both EA and MHEE samples). B. Recursive 18 

Maximum Margin criterion (RMMC) supervised analysis score plot C. Leave one out cross-19 

validated RMMC score plot. D-F Relative abundance of glycerophospholipids (GPL), by (D) 20 

class, (E) acyl chain length, and (F) desaturations. G-I GPL species that were significantly 21 

different (q <0.001), by (G) class, (H) acyl chain length, and (I) desaturations. Groups were 22 

compared by ANOVA (with Tukey’s HSD): *P<0.05; **P<0.01; ***P< 0.001. PS, 23 

phosphatidylserines; PI, phosphatidylinositol; PG, phosphatidylglycerol; PE, 24 

phosphatidylethanolamine; PA, phosphatidic acid. 25 

 26 

 27 

  28 



 29 

 1 

 2 

Figure 3: Glycerophospholipid signatures of esophageal and various control tissues 3 

(Cohort 2). 4 

A. Representative histology of healthy esophageal epithelium, inflamed esophageal 5 

epithelium, Barrett’s metaplasia, Barrett’s dysplasia and esophageal adenocarcinoma. 6 

Colour coding for rest of figure provided B. Principal components analysis of averaged mass 7 

spectra (m/z 600-1000) of the five tissue-types of patients in Cohort 2 (each dot = averaged 8 

spectra from one tissue type from one patient; each patient provided one tissue type only). 9 

C. Recursive Maximum Margin criterion (RMMC) supervised analysis score plot D. Leave 10 

one out cross-validated RMMC score plot as per confusion matrix; E-G. Relative 11 

abundances of GPLs (m/z 600-1000 range) grouped in terms of (E) class (F) acyl chain 12 

length and (G) desaturations. Groups were compared by ANOVA (with Tukey’s HSD): 13 

*P<0.05; **P<0.01; ***P< 0.001. PS, phosphatidylserines; PI, phosphatidylinositol; PG, 14 

phosphatidylglycerol; PE, phosphatidylethanolamine; PA, phosphatidic acid. 15 

 16 

 17 

 18 
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Figure 4: Fatty acids signatures of esophageal adenocarcinoma and matched healthy 1 

esophageal epithelium in Cohort 1.  2 

A. Principal components analysis (PCA) of averaged mass spectra (m/z 150-400) of 3 

esophageal adenocarcinoma (EA, red) versus matched healthy esophageal epithelium 4 

(MHEE, green) of patients in Cohort 1 (each dot = averaged spectra from one tissue type 5 

from one patient; each patient provided both EA and MHEE samples). B. Recursive 6 

Maximum Margin criterion (RMMC) supervised analysis score plot C. Leave one out cross-7 

validated RMMC score plot. D-G Relative abundance of FAs (m/z 150-400), grouped by (D) 8 

acyl chain length, and (F) desaturations. E,G FA species that were significantly different (q 9 

<0.001), by (E) acyl chain length, and (G) desaturations. Groups were compared by ANOVA 10 

(with Tukey’s HSD): *P<0.05; **P<0.01; ***P< 0.001. 11 
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 1 

Figure 5: The genetic framework of esophageal adenocarcinoma glycerophospholipid 2 

metabolism 3 

A. Geneset enrichment score plot of the GPL metabolism geneset in GSE 26886. B. 4 

Overview of GPL metabolism with schematics of the various GPL classes. C. Relative GPL 5 

gene expression between esophageal adenocarcinoma (cancer, EA) and matched healthy 6 

esophageal epithelium (normal, MHEE). D. Representative immunohistochemistry sections 7 

of the five FA metabolism genes in EA and MHEE. Bar applies to all images and represents 8 

100 µm E. Relative abundance of acyl chain lengths in FLO1 EA cells transfected with 9 

siRNA targeting ACLY and relevant controls. P values calculated with Mann-Whitney U test 10 

for qPCR experiments, and ANOVA with Tukey HSD for GPL profiling experiments *P<0.05; 11 

**P<0.01; ***P< 0.001; ****P< 0.001.  PS, phosphatidylserines; PI, phosphatidylinositol; PG, 12 

phosphatidylglycerol; PE, phosphatidylethanolamine; PA, phosphatidic acid, PC, 13 

phosphatidylcholine; DAG, diacylglycerol; DAG-3P, diacylglycerol-triphosphate; CDP-DAG 14 

cytidine diphosphate diacylglycerol. 15 
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