15 research outputs found

    A scalable framework for stylometric analysis of multi-author documents

    Get PDF
    This is an accepted manuscript of a chapter published by Springer in Database Systems for Advanced Applications. DASFAA 2018. Lecture Notes in Computer Science, vol 10827 on 13/05/2018, available online: https://doi.org/10.1007/978-3-319-91452-7_52 The accepted version of the publication may differ from the final published version.Stylometry is a statistical technique used to analyze the variations in the author’s writing styles and is typically applied to authorship attribution problems. In this investigation, we apply stylometry to authorship identification of multi-author documents (AIMD) task. We propose an AIMD technique called Co-Authorship Graph (CAG) which can be used to collaboratively attribute different portions of documents to different authors belonging to the same community. Based on CAG, we propose a novel AIMD solution which (i) significantly outperforms the existing state-of-the-art solution; (ii) can effectively handle a larger number of co-authors; and (iii) is capable of handling the case when some of the listed co-authors have not contributed to the document as a writer. We conducted an extensive experimental study to compare the proposed solution and the best existing AIMD method using real and synthetic datasets. We show that the proposed solution significantly outperforms existing state-of-the-art method

    Skeeter Buster: A Stochastic, Spatially Explicit Modeling Tool for Studying Aedes aegypti Population Replacement and Population Suppression Strategies

    Get PDF
    Dengue is a viral disease that affects approximately 50 million people annually, and is estimated to result in 12,500 fatalities. Dengue viruses are vectored by mosquitoes, predominantly by the species Aedes aegypti. Because there is currently no vaccine or specific treatment, the only available strategy to reduce dengue transmission is to control the populations of these mosquitoes. This can be achieved by traditional approaches such as insecticides, or by recently developed genetic methods that propose the release of mosquitoes genetically engineered to be unable to transmit dengue viruses. The expected outcome of different control strategies can be compared by simulating the population dynamics and genetics of mosquitoes at a given location. Development of optimal control strategies can then be guided by the modeling approach. To that end, we introduce a new modeling tool called Skeeter Buster. This model describes the dynamics and the genetics of Ae. aegypti populations at a very fine scale, simulating the contents of individual houses, and even the individual water-holding containers in which mosquito larvae reside. Skeeter Buster can be used to compare the predicted outcomes of multiple control strategies, traditional or genetic, making it an important tool in the fight against dengue

    High Energy Physics Opportunities Using Reactor Antineutrinos

    No full text
    Nuclear reactors are uniquely powerful, abundant, and flavor-pure sources of antineutrinos that continue to play a vital role in the US neutrino physics program. The US reactor antineutrino physics community is a diverse interest group encompassing many detection technologies and many particle physics topics, including Standard Model and short-baseline oscillations, BSM physics searches, and reactor flux and spectrum modeling. The community's aims offer strong complimentary with numerous aspects of the wider US neutrino program and have direct relevance to most of the topical sub-groups composing the Snowmass 2021 Neutrino Frontier. Reactor neutrino experiments also have a direct societal impact and have become a strong workforce and technology development pipeline for DOE National Laboratories and universities. This white paper, prepared as a submission to the Snowmass 2021 community organizing exercise, will survey the state of the reactor antineutrino physics field and summarize the ways in which current and future reactor antineutrino experiments can play a critical role in advancing the field of particle physics in the next decade

    High Energy Physics Opportunities Using Reactor Antineutrinos

    No full text
    Nuclear reactors are uniquely powerful, abundant, and flavor-pure sources of antineutrinos that continue to play a vital role in the US neutrino physics program. The US reactor antineutrino physics community is a diverse interest group encompassing many detection technologies and many particle physics topics, including Standard Model and short-baseline oscillations, BSM physics searches, and reactor flux and spectrum modeling. The community's aims offer strong complimentary with numerous aspects of the wider US neutrino program and have direct relevance to most of the topical sub-groups composing the Snowmass 2021 Neutrino Frontier. Reactor neutrino experiments also have a direct societal impact and have become a strong workforce and technology development pipeline for DOE National Laboratories and universities. This white paper, prepared as a submission to the Snowmass 2021 community organizing exercise, will survey the state of the reactor antineutrino physics field and summarize the ways in which current and future reactor antineutrino experiments can play a critical role in advancing the field of particle physics in the next decade

    High Energy Physics Opportunities Using Reactor Antineutrinos

    No full text
    Nuclear reactors are uniquely powerful, abundant, and flavor-pure sources of antineutrinos that continue to play a vital role in the US neutrino physics program. The US reactor antineutrino physics community is a diverse interest group encompassing many detection technologies and many particle physics topics, including Standard Model and short-baseline oscillations, BSM physics searches, and reactor flux and spectrum modeling. The community's aims offer strong complimentary with numerous aspects of the wider US neutrino program and have direct relevance to most of the topical sub-groups composing the Snowmass 2021 Neutrino Frontier. Reactor neutrino experiments also have a direct societal impact and have become a strong workforce and technology development pipeline for DOE National Laboratories and universities. This white paper, prepared as a submission to the Snowmass 2021 community organizing exercise, will survey the state of the reactor antineutrino physics field and summarize the ways in which current and future reactor antineutrino experiments can play a critical role in advancing the field of particle physics in the next decade

    High Energy Physics Opportunities Using Reactor Antineutrinos

    No full text
    Nuclear reactors are uniquely powerful, abundant, and flavor-pure sources of antineutrinos that continue to play a vital role in the US neutrino physics program. The US reactor antineutrino physics community is a diverse interest group encompassing many detection technologies and many particle physics topics, including Standard Model and short-baseline oscillations, BSM physics searches, and reactor flux and spectrum modeling. The community's aims offer strong complimentary with numerous aspects of the wider US neutrino program and have direct relevance to most of the topical sub-groups composing the Snowmass 2021 Neutrino Frontier. Reactor neutrino experiments also have a direct societal impact and have become a strong workforce and technology development pipeline for DOE National Laboratories and universities. This white paper, prepared as a submission to the Snowmass 2021 community organizing exercise, will survey the state of the reactor antineutrino physics field and summarize the ways in which current and future reactor antineutrino experiments can play a critical role in advancing the field of particle physics in the next decade
    corecore