527 research outputs found
Combinatorial CRISPR-Cas9 screens for de novo mapping of genetic interactions.
We developed a systematic approach to map human genetic networks by combinatorial CRISPR-Cas9 perturbations coupled to robust analysis of growth kinetics. We targeted all pairs of 73 cancer genes with dual guide RNAs in three cell lines, comprising 141,912 tests of interaction. Numerous therapeutically relevant interactions were identified, and these patterns replicated with combinatorial drugs at 75% precision. From these results, we anticipate that cellular context will be critical to synthetic-lethal therapies
The role of Cx36 and Cx43 in 4‐aminopyridine‐induced rhythmic activity in the spinal nociceptive dorsal horn: an electrophysiological study in vitro
Connexin (Cx) proteins and gap junctions support the formation of neuronal and glial syncytia that are linked to different forms of rhythmic firing and oscillatory activity in the CNS. In this study, quantitative reverse transcription polymerase chain reaction (RT‐qPCR) was used to profile developmental expression of two specific Cx proteins, namely glial Cx43 and neuronal Cx36, in postnatal lumbar spinal cord aged 4, 7, and 14 days. Extracellular electrophysiology was used to determine the contribution of Cx36 and Cx43 to a previously described form of 4‐aminopyridine (4‐AP)‐induced 4–12 Hz rhythmic activity within substantia gelatinosa (SG) of rat neonatal dorsal horn (DH) in vitro. The involvement of Cx36 and Cx43 was probed pharmacologically using quinine, a specific uncoupler of Cx36 and the mimetic peptide blocker Gap 26 which targets Cx43. After establishment of 4–12 Hz rhythmic activity by 4‐AP (25 μmol/L), coapplication of quinine (250 μmol/L) reduced 4‐AP‐induced 4–12 Hz rhythmic activity (P < 0.05). Preincubation of spinal cord slices with Gap 26 (100 μmol/L), compromised the level of 4‐AP‐induced 4–12 Hz rhythmic activity in comparison with control slices preincubated in ACSF alone (P < 0.05). Conversely, the nonselective gap junction “opener” trimethylamine (TMA) enhanced 4–12 Hz rhythmic behavior (P < 0.05), further supporting a role for Cx proteins and gap junctions. These data have defined a physiological role for Cx36 and Cx43 in rhythmic firing in SG, a key nociceptive processing area of DH. The significance of these data in the context of pain and Cx proteins as a future analgesic drug target requires further study
Recommended from our members
Free-Standing Hierarchically Sandwich-Type Tungsten Disulfide Nanotubes/Graphene Anode for Lithium-Ion Batteries
Transition metal dichalcogenides (TMD), analogue of graphene, could form various dimensionalities. Similar to carbon, one dimensional (1D) nanotube of TMD materials has wide application in hydrogen storage,Li-ion batteries and supercapacitors due to their unique structure and properties. Here we demonstrate the feasibility of tungsten disulfide nanotubes (WS2-NTs)/graphene (GS) sandwich-type architecture as anode for lithium-ion batteries for the first time. The graphene based hierarchical architecture plays vital roles in achieving fast electron/ion transfer, thus leading to good electrochemical performance. When evaluated as anode, WS2-NTs /GS hybrid could maintain a capacity of 318.6 mA/g over 500 cycles at a current density of 1A/g. Besides, the hybrid anode does not require any additional polymetric binder, conductive additives or a separate metal current-collector. The relatively high density of this hybrid is beneficial for high capacity per unit volume. Those characteristics make it a potential anode material for light and high performance lithium-ion batteries
Electron beam-formed ferromagnetic defects on MoS2 surface along 1T phase transition
1 T phase incorporation into 2H-MoS2 via an optimal electron irradiation leads to induce a weak ferromagnetic state at room temperature, together with the improved transport property. In addition to the 1T-like defects, the electron irradiation on the cleaved MoS2 surface forms the concentric circletype defects that are caused by the 2 H/1 T phase transition and the vacancies of the nearby S atoms of the Mo atoms. The electron irradiation-reduced bandgap is promising in vanishing the Schottky barrier to attaining spintronics device. The simple method to control and improve the magnetic and electrical properties on the MoS2 surface provides suitable ways for the low-dimensional device applications.ope
An investigation of the phase locking index for measuring of interdependency of cortical source signals recorded in the EEG
The phase locking index (PLI) was introduced to quantify in a statistical sense the phase synchronization of two signals. It has been commonly used to process biosignals. In this article, we investigate the PLI for measuring the interdependency of cortical source signals (CSSs) recorded in the Electroencephalogram (EEG). To this end, we consider simple analytical models for the mapping of simulated CSSs into the EEG. For these models, the PLI is investigated analytically and through numerical simulations. An evaluation is made of the sensitivity of the PLI to the amount of crosstalk between the sources through biological tissues of the head. It is found that the PLI is a useful interdependency measure for CSSs, especially when the amount of crosstalk is small. Another common interdependency measure is the coherence. A direct comparison of both measures has not been made in the literature so far. We assess the performance of the PLI and coherence for estimation and detection purposes based on, respectively, a normalized variance and a novel statistical measure termed contrast. Based on these performance measures, it is found that the PLI is similar or better than the CM in most cases. This result is also confirmed through analysis of EEGs recorded from epileptic patients
Evaluation of groundwater pollution in a mining area using analytical solution: a case study of the Yimin open-pit mine in China
Towards an optimal sampling strategy for assessing genetic variation within and among white clover (Trifolium repens L.) cultivars using AFLP
Cost reduction in plant breeding and conservation programs depends largely on correctly defining the minimal sample size required for the trustworthy assessment of intra- and inter-cultivar genetic variation. White clover, an important pasture legume, was chosen for studying this aspect. In clonal plants, such as the aforementioned, an appropriate sampling scheme eliminates the redundant analysis of identical genotypes. The aim was to define an optimal sampling strategy, i.e., the minimum sample size and appropriate sampling scheme for white clover cultivars, by using AFLP data (283 loci) from three popular types. A grid-based sampling scheme, with an interplant distance of at least 40 cm, was sufficient to avoid any excess in replicates. Simulations revealed that the number of samples substantially influenced genetic diversity parameters. When using less than 15 per cultivar, the expected heterozygosity (He) and Shannon diversity index (I) were greatly underestimated, whereas with 20, more than 95% of total intra-cultivar genetic variation was covered. Based on AMOVA, a 20-cultivar sample was apparently sufficient to accurately quantify individual genetic structuring. The recommended sampling strategy facilitates the efficient characterization of diversity in white clover, for both conservation and exploitation
Electronic properties of single-layer and multilayer transition metal dichalcogenides ( Mo, W and S, Se)
Single- and few-layer transition metal dichalcogenides have recently emerged
as a new family of layered crystals with great interest, not only from the
fundamental point of view, but also because of their potential application in
ultrathin devices. Here we review the electronic properties of semiconducting
, where Mo or W and S or Se. Based on of density functional
theory calculations, which include the effect of spin-orbit interaction, we
discuss the band structure of single-layer, bilayer and bulk compounds. The
band structure of these compounds is highly sensitive to elastic deformations,
and we review how strain engineering can be used to manipulate and tune the
electronic and optical properties of those materials. We further discuss the
effect of disorder and imperfections in the lattice structure and their effect
on the optical and transport properties of . The superconducting
transition in these compounds, which has been observed experimentally, is
analyzed, as well as the different mechanisms proposed so far to explain the
pairing. Finally, we include a discussion on the excitonic effects which are
present in these systems.Comment: 9 pages, 4 figures. Short review article for special issue of Ann.
Phys. on "Two-dimensional materials
- …
