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Abstract

Electrocardiogram (ECG) is conducted to monitor the electrical activity of the heart by presenting small amplitude
and duration signals; as a result, hidden information present in ECG data is difficult to determine. However, this
concealed information can be used to detect abnormalities. In our study, a fast feature-fusion method of ECG
heartbeat classification based on multi-linear subspace learning is proposed. The method consists of four stages.
First, baseline and high frequencies are removed to segment heartbeat. Second, as an extension of wavelets,
wavelet-packet decomposition is conducted to extract features. With wavelet-packet decomposition, good time
and frequency resolutions can be provided simultaneously. Third, decomposed confidences are arranged as a
two-way tensor, in which feature fusion is directly implemented with generalized N dimensional ICA (GND-ICA).
In this method, co-relationship among different data information is considered, and disadvantages of
dimensionality are prevented; this method can also be used to reduce computing compared with linear
subspace-learning methods (PCA). Finally, support vector machine (SVM) is considered as a classifier in heartbeat
classification. In this study, ECG records are obtained from the MIT-BIT arrhythmia database. Four main heartbeat
classes are used to examine the proposed algorithm. Based on the results of five measurements, sensitivity,
positive predictivity, accuracy, average accuracy, and t-test, our conclusion is that a GND-ICA-based strategy can
be used to provide enhanced ECG heartbeat classification. Furthermore, large redundant features are eliminated,
and classification time is reduced.
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1 Introduction
Cardiovascular diseases (CVDs) are among the most
common causes of death worldwide. Although death
rate caused by CVDs has decreased in developed coun-
tries, death rate has increased rapidly in developing
countries. CVD-related socioeconomic burden, as well
as risk factors, remains astonishingly high [1]. Behavioral
risks (e.g., tobacco smoking, physical inactivity, un-
healthy diet, etc.), metabolic risks (e.g., raised blood
pressure/sugar/lipids), and other risk factors (e.g., gen-
der, advancing age) increase death rates. For instance,
cardiac arrhythmia, which refers to disorders of the elec-
trical conduction system of the heart, may pose a high
risk and cause medical emergencies.
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Electrocardiogram (ECG), as an adjunct tool in cardio-
vascular diseases management, is used to non-invasively
monitor the electrical activity of the heart [2]. To cap-
ture frequent occurrence of arrhythmias, medical practi-
tioners record ECG activity for several hours. Large
amounts of data are recorded in computational com-
plexity. Therefore, automated heartbeat classification is
essential for diagnostic assistance.
Thus far, simple classifiers, such as linear discrimi-

nants [3] and K-nearest neighbor classifier [4], and com-
plex classifiers, including chaotic modeling, spectral
coherence analysis, artificial neural networks, and sup-
port vector machine, have been extensively applied.
Classifier combination is also used in ECG heartbeat
classification to improve accuracy [5]. The final decision
regarding classifier combination is achieved by consider-
ing the decisions of members or aggregating the deci-
sions of one or a few of the members [2].
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Feature extraction is one of the most important steps
in classification and can capture a certain underlying
property of ECG [6]. Various kinds of comprehensive
features have been extracted to describe ECG; these fea-
tures can be divided into three categories, including
temporal, morphological, and statistical features [7].
Temporal features are exclusively acquired from time-
domain signals and consist of RR- and heartbeat interval
features. The hidden complexities of an ECG signal can-
not be distinctly interpreted because of subtle changes.
More discriminating features can be extracted in a wave-
let transform (WT) domain than in a time domain [8].
Morphological and statistical features can be obtained
with WT of the ECG signal, which provides good reso-
lution in time and frequency domains [7]. However, WT
only displays sufficient frequency resolution at low fre-
quencies but poor frequency resolution at high frequencies.
As an extension of WT, wavelet-packet decomposition
(WPD) is developed to achieve fine frequency resolution at
both low and high frequencies. WPD can also be used to
investigate piecewise signal variations.
Feature combinations can improve classification re-

sults [9]. However, the algorithm of selecting and com-
bining multiple features poses a considerable challenge
[3]. In this paper, a novel multi-scale feature-fusion
method for ECG heartbeat classification is proposed. In
the proposed method, ECG is initially fragmented into
separate heartbeats; baseline and noise are further re-
moved from each heartbeat. Features are then extracted
by wavelet-packet decomposition, in which features
Fig. 1 Flowchart of the proposed method
become more distinguishable in a wavelet-packet-trans-
form domain than in a time domain. The fourth-level
components of WPD are represented as the features of
a heartbeat. All of the features of a heartbeat are ar-
ranged into a two-order tensor rather than a long vec-
tor; a two-order tensor is further processed by
generalized N dimension independent component ana-
lysis (GND-ICA) to select and fuse effective compo-
nents simultaneously. These fused components, as new
features of ECG heartbeats, are fed to a support vector
machine (SVM) for automated classification. Simula-
tion results from an MIT-BIH arrhythmia database
demonstrate high average accuracies of 98, 98.79, 98.87,
and 99.43 % of detected normal beats (N), supraventric-
ular ectopic beats (S), ventricular ectopic beats (V), and
fusing normal and ventricular ectopic beats (F), re-
spectively. The proposed method is compared with five
currently used methods and two conventional fusion
methods by using the MIT-BIH database. The proposed
method can improve ECG classification results com-
pared with other methods.
2 Methodology
The proposed ECG heartbeat classification method is
divided into four parts, namely pre-processing, feature
extraction, feature fusion, and classification. Our main
contribution is found in the third section, that is, feature
fusion, which involves a training stage and a test stage.
Each stage is briefly described in Fig. 1.
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(1) In the pre-processing stage, baseline and high-
frequency noises are initially removed from the
original input ECG signals. Heartbeats are then
segmented on the detected real R points.

(2) In the feature extraction stage, wavelet-packet
decomposition is used to extract WP coefficients as
heartbeat features. Fourth-level decompositions are
used as features in the following procedure.

(3) In the feature-fusion stage, all of the extracted
features of an ECG heartbeat are arranged as a two-
way tensor, in which feature-fusion procedure is
implemented using a multi-linear subspace-learning
method, GND-ICA.

(4) In the classification stage, SVM is directly used as a
classifier in final-heartbeat classification.
2.1 Pre-processing
ECG is composed of atrial depolarization (P wave), ven-
tricular depolarization (QRS complex), and ventricular
repolarization (T wave). These waves are induced by spe-
cific electrical phenomena on the cardiac surface. ECG
contains diverse kinds of noises, such as baseline wander,
power-line interference, and high-frequency noise. Base-
line wander caused by respiration or patient movement
can be corrected by subtracting the filtered signal from
the original signal with two median filters. These two me-
dian filters with widths of 200- and 600-ms are used to re-
move ORS complexes, P-waves, and T-waves, respectively
[10]. After the baseline of ECG is corrected, power-line
interference and high-frequency noise are removed using
a low-pass filter. Figure 2a, b show a part of the original
signal and the signal in which the noise and baseline are
removed, respectively.
Considering that this study does not contribute to

heartbeat detection in ECG, we directly segment the fil-
tered ECG signals by using heartbeat fiducial-point times
provided in the MIT-BIH arrhythmia database. Fiducial
points (R points) occur instantaneously in the major
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Fig. 2 ECG signals (a) A part of the original signal; b Noise reduction signa
local extreme of a QRS complex. However, several de-
tected R-point locations are skipped using this provided
annotation (Fig. 3a). A time window with a length of 40
samples near the detected R points is utilized to deter-
mine real R point locations, where the highest value is
found inside the windows (Fig. 3b). Based on the real R
points, 99 samples before the R points and 100 samples
after the R points are used as the real heartbeat samples,
(Fig. 3c).

2.2 Feature extraction
This study mainly investigates the process by which
heartbeat features are extracted. Pre-processed ECG
heartbeats are utilized in all of the following processing
methods. Wavelets provide relevant information to ex-
tract features. A multi-resolution representation of non-
stationary ECG can be obtained by wavelet analysis,
which provides a level-by-level transformation of a signal
from a time domain to a frequency domain. In wavelet-
packet analysis (WPD) according to wavelet theory, a
normalized signal is transmitted through a series of low-
and high-pass filters simultaneously [11, 12]; time do-
main is then transformed into frequency domain in each
level. Unlike wavelet transformation, WPD divides the
frequency sub-band of a signal with an equal width by
using sets of orthonormal basis functions. A signal is
split into approximation (A) and detail (D) coeffi-
cients; these coefficients are further split into next-
level A and D coefficients. Afterward, the process is
repeated. Figure 4 illustrates wavelet-packet analysis
of level-four decomposition. The top level in Fig. 4 is the
time representation of the ECG signal. Time and fre-
quency resolutions are traded off in each level. The bot-
tom level shows the frequency representation of a signal,
which decomposes both the approximation and details
coefficients.
After wavelet-packet analysis of a heartbeat is conducted,

a rich collection of abundant information with arbitrary
time-frequency resolution is obtained. This information
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Fig. 3 ECG signal segmentation. a Skipped R-point locations; b Real R-point locations; c Segmented real heartbeat sample
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shows that non-stationary and stationary characteristics of
the extracted features are combined.
The four-level decomposition of input ECG signal is

provided by WPD, which transfers the time domain to
the frequency domain (Fig. 5). With the levels computed
from top to bottom, time resolution decreases, whereas
frequency resolution increases. After the original signal
in the top level is decomposed (Fig. 5a), the data in the
next level of nodes (D1) show low-scale and high-
Fig. 4 Four-level decomposition using wavelet-packet transform
frequency properties. Approximations in each level of
A1, AA2, AAA3, and AAAA4 nodes appears similar to
the original approximations. In our study, a four-level
WPD is used to obtain the features of an ECG signal.

2.3 Feature fusion
After extracting wavelet coefficients in the fourth-level
decomposition of an ECG signal, we aim to fuse all of
the features to effectively classify heartbeats. A concept



Fig. 5 WPD of ECG signals. a Original signal; b-f Decomposed ECG signals at A1, D1, AA2, AAA3, and AAAA4 nodes
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Fig. 6 ECG heartbeat representation (a) Segmented heartbeat sample; b Features arranged in a two-way tensor
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Table 1 Training and test beats of randomly selected data for
each class

Class N S V F

Training 15019 1391 3740 401

Test 15019 1390 3740 401
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of tensor-based multi-linear subspace-learning method
called generalized N dimensional independent compo-
nent analysis (GND-ICA) is introduced to perform
multiple-feature fusion. It can effectively combine and
select all of the features extracted from the original sig-
nal and considers the interrelationship among different
wavelet-packet coefficients. A concept of “tensor” is in-
troduced to arrange all of the features of one heartbeat.
A tensor is an N-way array [13], and the order of a ten-
sor is known as mode [14].
In previous studies [15, 16], each mode of a tensor

should be defined distinctively. Therefore, the ECG
heartbeat can be represented using a two-way tensor Xtr

i
∈RI1�I2 ; i ¼ 1; 2;…; n by adjoining the above extracted
features. In this tensor, mode-1 is denoted by the num-
ber of the bottom level of a full wavelet-packet decom-
position (I1-D), and mode-2 is represented by the
number of features (I2-D). This two-way tensor is pre-
sented in Fig. 6. In this manner, the factor inherent to
the element of feature vectors and the factor among dif-
ferent features can be disentangled. An optimal de-
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Fig. 7 Schematic of average heartbeats for (a) Class N; (b) Class S; (c) Class
mixing matrix on each mode is determined by GND-
ICA with a series of training tensor samples [17].
Given a series of training two-way tensors Xtr

i ∈R
I1�I2 ;

i ¼ 1; 2;…; n by learning two de-mixing matrices Wz∈
RJz�Iz ; z ¼ 1; 2 J z≤Izð Þ , GND-ICA finds another set of
lower-rank core tensor Stri ∈R

J1�J2 ; i ¼ 1; 2;…; n , that re-
tains as much of the variation of the original data as
possible and in which the elements on each mode are
as independent as possible:

Stri ¼ Xtr
i �1W1�2W2 ð1Þ

The optimization problem of GND-ICA is defined to
minimize error function, as expressed in the following
equation [9, 10, 18]:

e ¼ argmin
Az ;z¼1;2

Xn

i¼1

Xtr
i ‐ Stri �1A1�2A2
� �2 ð2Þ

where Az, z = 1, 2 is the pseudo-inverse of the de-mixing
matrix Wz, z = 1, 2.
To effectively represent a heartbeat signal, we fuse all

of the features by de-mixing matrices Wz, z = 1, 2 in
each mode of feature representation Xte∈RI1�I2 . In this
process, the factor inherent to the element of feature
vectors and the factor among different features are con-
sidered. Thus, we obtain the following expression:
(b)
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Fig. 8 Average classification rates of tensor-based and conventional methods

Fig. 9 Number of average accuracy with respect to corresponding
gamma values in GND-ICA
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Ste ¼ Xte�1W1�2W2 ð3Þ
which is used in heartbeat classification.

2.4 Classification
After distinguishing features are extracted from each
heartbeat, a classifier is applied to provide the ECG
heartbeat classification. In this paper, SVM [19], as an ef-
fective tool used to solve numerous classification prob-
lems, is used in heartbeat classification.
In our study, LIBSVM package is used. For fair com-

parison, the optimum parameters of the kernel function
(radial basis function) are assigned to SVM for each sig-
nal representation [20].

3 Experimental results
The MIT-BIH arrhythmia database is utilized in our
study [21, 22]. Approximately 109,000 heartbeats con-
tained in 48 ECG recordings can be achieved for ap-
proximately 30 min in each recording. MIT-BIT
heartbeat types are classified into five main classes ac-
cording to the standards recommended by the Associ-
ation for the Advancement of Medical Instrumentation.
Heartbeats belonging to class N and originating from
the sinus node are normal and bundle-branch-block beat
types. Supraventricular ectopic beats and ventricular ec-
topic beats belong to classes S and V, respectively. Fused
normal and ventricular ectopic beats belong to class F.
The unknown heartbeats, including paced beats, are
classified in class Q. The ECG signals of the MIT-BIH
arrhythmia database are sampled at 360Hz, and 200
sampling points are used for signal representation.
All of the experiments are conducted using a standard

PC (Intel (R) Core (TM) i7-4770 CPU @ 3.40GHz), and
the learning phase to obtain the transformation matrix is
carried out in Matlab 2013 [23]. The performance of the
proposed feature-fusion method is evaluated using all of
the heartbeat segments found in the MIT-BIT database.
In this study, random subsampling is conducted to train
and evaluate classifiers. Data are randomly selected from
the whole database ten times; the number of each class
is shown in Table 1. The schematic of average heartbeats
in each class of training heartbeats is shown in Fig. 7.
WPD was computed in each of the ECG heartbeat by

using discrete approximation of the Meyer wavelet,
which is considered as the most efficient decomposition
of feature extraction [24]. All of the decomposition
coefficients in the fourth level are used as features,
with 16 sets of vectors and 107 components. The
performance of the multi-linear subspace-learning method
GND-ICA and the linear subspace-learning method



Table 2 Confusion matrices of (a) WPD-based classification, (b)
PCA-based classification, and (c) GND-ICA based classification

(a) WPD Algorithm label

N S V F Σ

Original label N 14869 81 60 9 15019

S 230 1137 23 0 1390

V 247 13 3467 13 3741

F 56 3 43 299 401

Σ 15402 1234 3593 321 20550

(b) PCA Algorithm Label

N S V F Σ

Original label N 14851 58 94 16 15019

S 276 1063 51 0 1390

V 164 25 3527 24 3740

F 96 2 31 272 401

Σ 15387 1148 3703 312 20550

(c) GND-ICA Algorithm label

N S V F Σ

Original label N 14884 65 58 12 15019

S 143 1224 22 1 1390

V 92 18 3624 16 3740

F 52 0 37 312 401

Σ 15161 1307 3741 341 20550
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PCA of heartbeat classification is described in terms
of sensitivity, positive predictivity, accuracy, and average
accuracy.

3.1 Evaluation criterion
Four classes, namely, N, S, V, and F, are used in the ex-
periments. We assume that i, j ∈ {N, S, V, F}, Ci,j is the
number of heartbeats of class i classified as j. If ∀ i ≠ j,
then Ci,j is an incorrectly classified heartbeat, whereas
Ci,i is a correctly classified heartbeat [7]. We define Bj =
∑∀ jCi,j as the total number of examples originally be-
longing to class i; Aj = ∑∀ iCi,j as the total number of ex-
amples labeled as class j; and Ctotal = ∑∀ i ∀ jCi,j. We
denote TPi = Ci,i as the true positives of I, TNi = Ctotal −
Bi − Ai + Ci,i as the true negatives of I, FPi = Ai − Ci,i as
the false positives of I, and FNi = Bi − Ci,i as the true
negatives of i. The accuracy (ACi) of i is the proportion
Table 3 Performance analysis of the classification with SVM based o
based features in terms of above introduced four measures in perce

Features N S

AC Sens PPV AC Sens PPV

WPD 96.68 99.00 96.54 98.30 81.80 92.14

PCA 96.57 98.89 96.52 98.00 76.47 92.60

GND-ICA 98.00 99.10 98.17 98.79 88.06 93.65
of the total number of correct predictions defined as
follows:

ACi ¼ TPi þ TNi

TPi þ TNi þ FPi þ FNi
ð4Þ

The sensitivity (Sensi) of i refers to the ability of the
method to correctly identify the heartbeat with the cor-
responding class.

Sensi ¼ TPi

Bi
ð5Þ

The positive predictive value (PPVi) of i is a propor-
tion used to determine the probability that the result ac-
tually belongs to a particular class if the result is
positive:

PPV i ¼ TPi

Ai
ð6Þ

The average accuracy (MACtotal) is defined as Eq. 22
corresponding to the average classification rate of all
classes:

MACtotal ¼
X

∀i
TPi

Ctotal
ð7Þ

3.2 Classification performance of different features
After WPD, PCA, and GND-ICA are conducted, the fea-
tures are fed to SVM for automated classification [25].
The average classification rates of the methods except
WPD vary with the dimension of reduced features.
Figure 8 shows the average accuracy in each experiment
by using PCA components and GND-ICA components,
respectively. In this study, the original dimension of
WPD features (107 × 16 = 1712) reduced into 10, 12, 14,
16, 18, and 20 dimensions is investigated. We observe
that GND-ICA can improve the average accuracy, al-
though the dimension is reduced to ten. In addition, the
highest-average accuracy is obtained by GND-ICA with
16 dimensions. Therefore, GND-ICA not only reduces
high dimension of original concatenation features but
also improves classification results.
Average accuracies (Fig. 8) are obtained with the

optimum parameter gamma in the radial basis function
of SVM. For example, numerous possible values in SVM
n the original WPD features, PCA-based features, and GND-ICA
ntage

V F MAC

AC Sens PPV AC Sens PPV

98.06 92.70 96.49 99.40 74.56 93.15 96.21

98.11 94.30 95.25 99.18 67.83 87.18 95.93

98.87 96.90 96.87 99.43 77.81 91.50 97.53



Table 4 p values for each class between different methods

N S V F Total

GND-ICA | WPD 0.2445 9.54e-10 1.42e-24 0.0930 1.01e-16

GND-ICA | PCA 0.0127 1.34e-14 7.35e-13 0.1685 4.73e-10
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of GND_ICA_16 are tested, and MACtotal is plotted with
respect to different gamma values (Fig. 9). The highest-
average accuracy is provided at gamma = 0.7, and the
corresponding average accuracy is 97.54 % (Fig. 9).

3.3 Classification Evaluation with Different Criteria
Considering that the average accuracy is changed accord-
ing to dimension reduction, we select the highest-classifi-
cation rate to compare our results.
Table 2 displays the complete classification description

obtained by applying conventional feature-fusion methods
or tensor-based feature-fusion methods in the form of
confusion matrices. Performance detail per beat is pro-
vided by these matrices. Considering that the average ac-
curacy is changed according to dimension reduction, we
obtain all of the results from the best experimental set
with 16 dimensions to achieve unity and compare the re-
sults. Table 3 shows the results obtained using the differ-
ent methods on the basis of the introduced evaluation
criteria. In conventional methods, all of the features
should be concatenated as a vector (107 × 16 = 1712) and
then projected into a PCA subspace. In the tensor-based
method, all of the features should be arranged as a two-
way tensor (size of 107 × 16), and directly processed by
GND-ICA.
Differences between proposed method and conven-

tional methods should be quantified. A t-test is a statis-
tical test that can be used to determine if two sets of
groups are significantly different from each other. A p
value is a parameter of t-test used to assess significant
difference. In general, a p value equal to or less than
0.05 is regarded as a significant difference and less than
0.01 is considered a highly significant difference. In
addition, smaller p value corresponds to greater signifi-
cant difference between two groups. Table 4 shows the p
value obtained from algorithm-labeled class (GND-ICA)
Table 5 Comparison of different classification methods on the MIT-

Authors Features

Manab Kumar Das et al. [26] ST +WT + Temporal

Inan et al. [27] DyWT + timing information

Jiang et al. [28] Hermite transform coefficients + time interva

Ince et al. [29] Morphological-wavelet transform + PCA, tem

Martis et al. [30] Bispectrum + PCA

Proposed method WPD + GND_ICA
and conventional-labeled classes (WPD, PCA). After the
difference between GND-ICA and WPD is evaluated, a
highly significant difference is found between S and V.
After the difference between GND-ICA and PCA is eval-
uated, a highly significant difference is found between S
and V; likewise, a significant difference is observed in N.
Therefore, highly significant differences are observed be-
tween GND-ICA and WPD and between GND-ICA and
PCA. This result indicates that the average accuracy of
the proposed method is only less than 2 % higher than
that of WPD or PCA. However, highly significant differ-
ences can be achieved in ECG heartbeats classification.

3.4 Computational efficiency
Computational efficiency is investigated using the com-
puting time of the transformation matrix of the methods
with 16 dimensions. In the multi-linear subspace-learn-
ing methods, tensor mode 1 is reduced to 16-D, and
mode 2 is reduced to 1-D. In all of the training heart-
beats, GND-ICA requires 9.73 s to calculate the trans-
formation matrices. This time is considerably shorter
than 19.59 s, which is required by PCA.

3.5 Comparison with state-of-the-art methods
The MIT-BIH arrhythmia database is the standard data-
base used in current methods to evaluate performance.
Therefore, a comprehensive summary of ECG heartbeat
classifications is provided using this database (Table 5).
In [26], temporal features (pre-RR-interval, post-RR-in-
tervals, average RR-intervals, and local average RR-
interval), and morphological features (ST-based, WT-
based, and combinations) are extracted, and five classes
(N, S, V, F, Q) are classified using a multilayer percep-
tron neural network classifier with an average accuracy
of 97.5 %. Wavelet-transformed ECG waves with timing
information are the feature of the two classes (normal
and premature ventricular contractions) in [27]. The
method achieves 95.16 % accuracy with neural network
as a classifier. Hermite transform coefficients and the
time interval between two neighboring R-peaks are used
in [28] as features and input to the block-based neural
networks for heartbeats classification, and the average
BIT arrhythmia database

Classifier Classes Average
accuracy

MLP-NN 5 97.5 %

Neural network 2 95.16 %

l Block-based neural networks 5 96.6 %

poral features Optimal artificial neural networks 5 95.58 %

SVM with RBF kernel 5 93.48 %

SVM with RBF kernel 4 97.54 %
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accuracy is 96.6 %. Morphological-wavelet transform fea-
tures reduced by PCA and temporal features are ex-
tracted in [29] at 95.58 % accuracy. A classifier is
composed of feed-forward and fully connected artificial
neural networks, which are improved by a multidimen-
sional particle swarm optimization technique. Five types of
heartbeats are classified in [30] using bispectrum features
further reduced by PCA for dimension reduction. An aver-
age accuracy of 93.47 % is achieved using a least-square-
support vector machine with a radial basis function.

4 Conclusions and discussion
ECG heartbeat classification is one of the most signifi-
cant research fields in computer-aided diagnosis. A
study of a feature-fusion method based on a multi-
learning subspace-learning algorithm called GND-ICA
for ECG heartbeat classification is proposed. The com-
monly used MIT-BIH arrhythmia database is employed
in all of our experiments. ECG signals are segmented
after baseline; high-frequency noise is removed and fidu-
cial points are detected. Four groups labeled in the MIT-
BIH arrhythmia database are selected and used in our
classification study. These labeled ECG heartbeats include
normal beats (N), supraventricular ectopic beats (S), ven-
tricular ectopic beats (V), and fused normal and ventricu-
lar ectopic beats (F). Wavelet-packet decomposition, as a
technique used to analyze the relationship between time
and frequency information is also performed to extract
features. Wavelet-packet coefficients extracted in the
fourth level, which is composed of approximations and
details, are used for further feature fusion. A total of 16
sets of coefficients with a size of 107 represent one ECG
heartbeat simultaneously. In contrast to linear subspace-
learning methods (PCA) in which all of the features
should be transformed as a vector, multi-linear subspace-
learning method (GND-ICA) can be used to process input
data in a tensor form. Thus, 16 sets of coefficients features
are further fused with GND-ICA by arranging them as a
two-way tensor; in this technique, the factor inherent in
the element of feature vectors and the factor among differ-
ent features are considered. With SVM, the fused features
are used to discriminate four different types of heartbeats.
Five common evaluation criteria, including sensitivity,
positive predictivity, accuracy, average accuracy, and t-test,
are used to investigate classification performance. Based
on the classification results, our conclusion is that per-
formance of GND-ICA-based feature fusion is more dis-
tinguished than that of the linear subspace-learning
method PCA. Furthermore, the computing time of the
transformation matrices of GND-ICA is considerably
shorter than that of conventional PCA. Thus, GND-ICA
not only improves the classification time but also elimi-
nates numerous redundant features, prevents the draw-
backs of dimensionality.
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