133 research outputs found

    Towards the “ultimate earthquake-proof” building: Development of an integrated low-damage system

    Get PDF
    The 2010–2011 Canterbury earthquake sequence has highlighted the severe mismatch between societal expectations over the reality of seismic performance of modern buildings. A paradigm shift in performance-based design criteria and objectives towards damage-control or low-damage design philosophy and technologies is urgently required. The increased awareness by the general public, tenants, building owners, territorial authorities as well as (re)insurers, of the severe socio-economic impacts of moderate-strong earthquakes in terms of damage/dollars/ downtime, has indeed stimulated and facilitated the wider acceptance and implementation of cost-efficient damage-control (or low-damage) technologies. The ‘bar’ has been raised significantly with the request to fast-track the development of what the wider general public would hope, and somehow expect, to live in, i.e. an “earthquake-proof” building system, capable of sustaining the shaking of a severe earthquake basically unscathed. The paper provides an overview of recent advances through extensive research, carried out at the University of Canterbury in the past decade towards the development of a low-damage building system as a whole, within an integrated performance-based framework, including the skeleton of the superstructure, the non-structural components and the interaction with the soil/foundation system. Examples of real on site-applications of such technology in New Zealand, using concrete, timber (engineered wood), steel or a combination of these materials, and featuring some of the latest innovative technical solutions developed in the laboratory are presented as examples of successful transfer of performance-based seismic design approach and advanced technology from theory to practice

    Investigating the structure of biomass-derived non-graphitizing mesoporous carbons by electron energy loss spectroscopy in the transmission electron microscope and X-ray photoelectron spectroscopy

    No full text
    We have investigated the microstructure and bonding of two biomass-based porous carbon chromatographic stationary phase materials (alginic acid-derived Starbon® and calcium alginate-derived mesoporous carbon spheres (AMCS) and a commercial porous graphitic carbon (PGC), using high resolution transmission electron microscopy, electron energy loss spectroscopy (EELS), N2 porosimetry and X-ray photoelectron spectroscopy (XPS). The planar carbon sp 2-content of all three material types is similar to that of traditional nongraphitizing carbon although, both biomass-based carbon types contain a greater percentage of fullerene character (i.e. curved graphene sheets) than a non-graphitizing carbon pyrolyzed at the same temperature. This is thought to arise during the pyrolytic breakdown of hexauronic acid residues into C5 intermediates. Energy dispersive X-ray and XPS analysis reveals a homogeneous distribution of calcium in the AMCS and a calcium catalysis mechanism is discussed. That both Starbon® and AMCS, with high-fullerene character, show chromatographic properties similar to those of a commercial PGC material with extended graphitic stacks, suggests that, for separations at the molecular level, curved fullerene- like and planar graphitic sheets are equivalent in PGC chromatography. In addition, variation in the number of graphitic layers suggests that stack depth has minimal effect on the retention mechanism in PGC chromatography

    Early apoptosis of porcine alveolar macrophages limits avian influenza virus replication and proinflammatory dysregulation

    Get PDF
    Pigs are evidently more resistant to avian than swine influenza A viruses, mediated in part through frontline epithelial cells and alveolar macrophages (AM). Although porcine AM (PAM) are crucial in influenza virus control, their mode of control is unclear. To gain insight into the possible role of PAM in the mediation of avian influenza virus resistance, we compared the host effects and replication of two avian (H2N3 and H6N1) and three mammalian (swine H1N1, human H1N1 and pandemic H1N1) influenza viruses in PAM. We found that PAM were readily susceptible to initial infection with all five avian and mammalian influenza viruses but only avian viruses caused early and extensive apoptosis (by 6 h of infection) resulting in reduced virus progeny and moderated pro- inflammation. Full length viral PB1-F2 present only in avian influenza viruses is a virulence factor that targets AM for mitochondrial associated apoptotic cell death. With the use of reverse genetics on an avian H5N1 virus, we found that full length PB1-F2 contributed to increased apoptosis and pro-inflammation but not to reduced virus replication. Taken together, we propose that early apoptosis of PAM limits the spread of avian influenza viruses and that PB1-F2 could play a contributory role in the process

    Utilisation of an operative difficulty grading scale for laparoscopic cholecystectomy

    Get PDF
    Background A reliable system for grading operative difficulty of laparoscopic cholecystectomy would standardise description of findings and reporting of outcomes. The aim of this study was to validate a difficulty grading system (Nassar scale), testing its applicability and consistency in two large prospective datasets. Methods Patient and disease-related variables and 30-day outcomes were identified in two prospective cholecystectomy databases: the multi-centre prospective cohort of 8820 patients from the recent CholeS Study and the single-surgeon series containing 4089 patients. Operative data and patient outcomes were correlated with Nassar operative difficultly scale, using Kendall’s tau for dichotomous variables, or Jonckheere–Terpstra tests for continuous variables. A ROC curve analysis was performed, to quantify the predictive accuracy of the scale for each outcome, with continuous outcomes dichotomised, prior to analysis. Results A higher operative difficulty grade was consistently associated with worse outcomes for the patients in both the reference and CholeS cohorts. The median length of stay increased from 0 to 4 days, and the 30-day complication rate from 7.6 to 24.4% as the difficulty grade increased from 1 to 4/5 (both p < 0.001). In the CholeS cohort, a higher difficulty grade was found to be most strongly associated with conversion to open and 30-day mortality (AUROC = 0.903, 0.822, respectively). On multivariable analysis, the Nassar operative difficultly scale was found to be a significant independent predictor of operative duration, conversion to open surgery, 30-day complications and 30-day reintervention (all p < 0.001). Conclusion We have shown that an operative difficulty scale can standardise the description of operative findings by multiple grades of surgeons to facilitate audit, training assessment and research. It provides a tool for reporting operative findings, disease severity and technical difficulty and can be utilised in future research to reliably compare outcomes according to case mix and intra-operative difficulty

    Role of Operon aaoSo-mutT in Antioxidant Defense in Streptococcus oligofermentans

    Get PDF
    Previously, we have found that an insertional inactivation of aaoSo, a gene encoding L-amino acid oxidase (LAAO), causes marked repression of the growth of Streptococcus oligofermentans. Here, we found that aaoSo and mutT, a homolog of pyrophosphohydrolase gene of Escherichia coli, constituted an operon. Deletion of either gene did not impair the growth of S. oligofermentans, but double deletion of both aaoSo and mutT was lethal. Quantitative PCR showed that the transcript abundance of mutT was reduced for 13-fold in the aaoSo insertional mutant, indicating that gene polarity derived from the inactivation of aaoSo attenuated the expression of mutT. Enzymatic assays were conducted to determine the biochemical functions of LAAO and MutT of S. oligofermentans. The results indicated that LAAO functioned as an aminoacetone oxidase [47.75 nmol H2O2 (min·mg protein)–1]; and MutT showed the pyrophosphohydrolase activity, which removed mutagens such as 8-oxo-dGTP. Like paraquat, aaoSo mutations increased the expression of SOD, and addition of aminoacetone (final concentration, 5 mM) decreased the mutant’s growth by 11%, indicating that the aaoSo mutants are under ROS stress. HPLC did reveal elevated levels of cytoplasmic aminoacetone in both the deletion and insertional gene mutants of aaoSo. Electron spin resonance spectroscopy showed increased hydroxyl radicals in both types of aaoSo mutant. This demonstrated that inactivation of aaoSo caused the elevation of the prooxidant aminoacetone, resulting the cellular ROS stress. Our study indicates that the presence of both LAAO and MutT can prevent endogenous metabolites-generated ROS and mutagens. In this way, we were able to determine the role of the aaoSo-mutT operon in antioxidant defense in S. oligofermentans

    Population dynamics of an RNA virus and its defective interfering particles in passage cultures

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Viruses can fall prey to their defective interfering (DI) particles. When viruses are cultured by serial passage on susceptible host cells, the presence of virus-like DI particles can cause virus populations to rise and fall, reflecting predator-prey interactions between DI and virus particles. The levels of virus and DI particles in each population passage can be determined experimentally by plaque and yield-reduction assays, respectively.</p> <p>Results</p> <p>To better understand DI and virus particle interactions we measured vesicular stomatitis virus and DI particle production during serial-passage culture on BHK cells. When the multiplicity of infection (MOI, or ratio of infectious virus particles to cells) was fixed, virus yields followed a pattern of progressive decline, with higher MOI driving earlier and faster drops in virus level. These patterns of virus decline were consistent with predictions from a mathematical model based on single-passage behavior of cells co-infected with virus and DI particles. By contrast, the production of virus during fixed-volume passages exhibited irregular fluctuations that could not be described by either the steady-state or regular oscillatory dynamics of the model. However, these irregularities were, to a significant degree, reproduced when measured host-cell levels were incorporated into the model, revealing a high sensitivity of virus and DI particle populations to fluctuations in available cell resources.</p> <p>Conclusions</p> <p>This study shows how the development of mathematical models, when guided by quantitative experiments, can provide new insight into the dynamic behavior of virus populations.</p

    Structural and electronic determinants of lytic polysaccharide monooxygenase reactivity on polysaccharide substrates

    Get PDF
    Lytic polysaccharide monooxygenases (LPMOs) are industrially important copper-dependent enzymes that oxidatively cleave polysaccharides. Here we present a functional and structural characterization of two closely related AA9-family LPMOs from Lentinus similis (LsAA9A) and Collariella virescens (CvAA9A). LsAA9A and CvAA9A cleave a range of polysaccharides, including cellulose, xyloglucan, mixed-linkage glucan and glucomannan. LsAA9A additionally cleaves isolated xylan substrates. The structures of CvAA9A and of LsAA9A bound to cellulosic and non-cellulosic oligosaccharides provide insight into the molecular determinants of their specificity. Spectroscopic measurements reveal differences in copper co-ordination upon the binding of xylan and glucans. LsAA9A activity is less sensitive to the reducing agent potential when cleaving xylan, suggesting that distinct catalytic mechanisms exist for xylan and glucan cleavage. Overall, these data show that AA9 LPMOs can display different apparent substrate specificities dependent upon both productive protein–carbohydrate interactions across a binding surface and also electronic considerations at the copper active site

    A comprehensive structural, biochemical and biological profiling of the human NUDIX hydrolase family

    Get PDF
    The NUDIX enzymes are involved in cellular metabolism and homeostasis, as well as mRNA processing. Although highly conserved throughout all organisms, their biological roles and biochemical redundancies remain largely unclear. To address this, we globally resolve their individual properties and inter-relationships. We purify 18 of the human NUDIX proteins and screen 52 substrates, providing a substrate redundancy map. Using crystal structures, we generate sequence alignment analyses revealing four major structural classes. To a certain extent, their substrate preference redundancies correlate with structural classes, thus linking structure and activity relationships. To elucidate interdependence among the NUDIX hydrolases, we pairwise deplete them generating an epistatic interaction map, evaluate cell cycle perturbations upon knockdown in normal and cancer cells, and analyse their protein and mRNA expression in normal and cancer tissues. Using a novel FUSION algorithm, we integrate all data creating a comprehensive NUDIX enzyme profile map, which will prove fundamental to understanding their biological functionality

    Association of food security status with overweight and dietary intake: exploration of White British and Pakistani-origin families in the Born in Bradford cohort.

    Get PDF
    BACKGROUND: Food insecurity has been associated with dietary intake and weight status in UK adults and children although results have been mixed and ethnicity has not been explored. We aimed to compare prevalence and trajectories of weight and dietary intakes among food secure and insecure White British and Pakistani-origin families. METHODS: At 12 months postpartum, mothers in the Born in Bradford cohort completed a questionnaire on food security status and a food frequency questionnaire (FFQ) assessing their child's intake in the previous month; at 18 months postpartum, mothers completed a short-form FFQ assessing dietary intake in the previous 12 months. Weights and heights of mothers and infants were assessed at 12-, 24-, and 36-months postpartum, with an additional measurement of children taken at 4-5 years. Associations between food security status and dietary intakes were assessed using Wilcoxon-Mann-Whitney for continuous variables and χ2 or Fisher's exact tests for categorical variables. Quantile and logistic regression were used to determine dietary intakes adjusting for mother's age. Linear mixed effects models were used to assess longitudinal changes in body mass index (BMI) in mothers and BMI z-scores in children. RESULTS: At 12 months postpartum, White British mothers reported more food insecurity than Pakistani-origin mothers (11% vs 7%; p < 0.01) and more food insecure mothers were overweight. Between 12 and 36 months postpartum, BMI increased more among food insecure Pakistani-origin mothers (β = 0.77 units, [95% Confidence Interval [CI]: 0.40, 1.10]) than food secure (β = 0.44 units, 95% CI: 0.33, 0.55). This was also found in Pakistani-origin children (BMI z-score: food insecure β = 0.40 units, 95% CI: 0.22, 0.59; food secure β = 0.25 units, 95% CI: 0.20, 0.29). No significant increases in BMI were observed for food secure or insecure White British mothers while BMI z-score increased by 0.17 (95% CI: 0.13, 0.21) for food secure White British children. Food insecure mothers and children had dietary intakes of poorer quality, with fewer vegetables and higher consumption of sugar-sweetened drinks. CONCLUSIONS: Food security status is associated with body weight and dietary intakes differentially by ethnicity. These are important considerations for developing targeted interventions

    Defective Interfering Viral Particles in Acute Dengue Infections

    Get PDF
    While much of the genetic variation in RNA viruses arises because of the error-prone nature of their RNA-dependent RNA polymerases, much larger changes may occur as a result of recombination. An extreme example of genetic change is found in defective interfering (DI) viral particles, where large sections of the genome of a parental virus have been deleted and the residual sub-genome fragment is replicated by complementation by co-infecting functional viruses. While most reports of DI particles have referred to studies in vitro, there is some evidence for the presence of DI particles in chronic viral infections in vivo. In this study, short fragments of dengue virus (DENV) RNA containing only key regulatory elements at the 3′ and 5′ ends of the genome were recovered from the sera of patients infected with any of the four DENV serotypes. Identical RNA fragments were detected in the supernatant from cultures of Aedes mosquito cells that were infected by the addition of sera from dengue patients, suggesting that the sub-genomic RNA might be transmitted between human and mosquito hosts in defective interfering (DI) viral particles. In vitro transcribed sub-genomic RNA corresponding to that detected in vivo could be packaged in virus like particles in the presence of wild type virus and transmitted for at least three passages in cell culture. DENV preparations enriched for these putative DI particles reduced the yield of wild type dengue virus following co-infections of C6–36 cells. This is the first report of DI particles in an acute arboviral infection in nature. The internal genomic deletions described here are the most extensive defects observed in DENV and may be part of a much broader disease attenuating process that is mediated by defective viruses
    corecore