4,227 research outputs found
Simulating the effect of muscle weakness and contracture on neuromuscular control of normal gait in children
Altered neural control of movement and musculoskeletal deficiencies are common in children with spastic cerebral palsy (SCP), with muscle weakness and contracture commonly experienced. Both neural and musculoskeletal deficiencies are likely to contribute to abnormal gait, such as equinus gait (toe-walking), in children with SCP. However, it is not known whether the musculoskeletal deficiencies prevent normal gait or if neural control could be altered to achieve normal gait. This study examined the effect of simulated muscle weakness and contracture of the major plantarflexor/dorsiflexor muscles on the neuromuscular requirements for achieving normal walking gait in children. Initial muscle-driven simulations of walking with normal musculoskeletal properties by typically developing children were undertaken. Additional simulations with altered musculoskeletal properties were then undertaken; with muscle weakness and contracture simulated by reducing the maximum isometric force and tendon slack length, respectively, of selected muscles. Muscle activations and forces required across all simulations were then compared via waveform analysis. Maintenance of normal gait appeared robust to muscle weakness in isolation, with increased activation of weakened muscles the major compensatory strategy. With muscle contracture, reduced activation of the plantarflexors was required across the mid-portion of stance suggesting a greater contribution from passive forces. Increased activation and force during swing was also required from the tibialis anterior to counteract the increased passive forces from the simulated dorsiflexor muscle contracture. Improvements in plantarflexor and dorsiflexor motor function and muscle strength, concomitant with reductions in plantarflexor muscle stiffness may target the deficits associated with SCP that limit normal gait
Recognition without identification, erroneous familiarity, and déjà vu
Déjà vu is characterized by the recognition of a situation concurrent with the awareness that this recognition is inappropriate. Although forms of déjà vu resolve in favor of the inappropriate recognition and therefore have behavioral consequences, typical déjà vu experiences resolve in favor of the awareness that the sensation of recognition is inappropriate. The resultant lack of behavioral modification associated with typical déjà vu means that clinicians and experimenters rely heavily on self-report when observing the experience. In this review, we focus on recent déjà vu research. We consider issues facing neuropsychological, neuroscientific, and cognitive experimental frameworks attempting to explore and experimentally generate the experience. In doing this, we suggest the need for more experimentation and amore cautious interpretation of research findings, particularly as many techniques being used to explore déjà vu are in the early stages of development.PostprintPeer reviewe
Discrete wavelet transform de-noising in eukaryotic gene splicing
<p>Abstract</p> <p>Background</p> <p>This paper compares the most common digital signal processing methods of exon prediction in eukaryotes, and also proposes a technique for noise suppression in exon prediction. The specimen used here which has relevance in medical research, has been taken from the public genomic database - GenBank.</p> <p>Methods</p> <p>Here exon prediction has been done using the digital signal processing methods viz. binary method, EIIP (electron-ion interaction psuedopotential) method and filter methods. Under filter method two filter designs, and two approaches using these two designs have been tried. The discrete wavelet transform has been used for de-noising of the exon plots.</p> <p>Results</p> <p>Results of exon prediction based on the methods mentioned above, which give values closest to the ones found in the NCBI database are given here. The exon plot de-noised using discrete wavelet transform is also given.</p> <p>Conclusion</p> <p>Alterations to the proven methods as done by the authors, improves performance of exon prediction algorithms. Also it has been proven that the discrete wavelet transform is an effective tool for de-noising which can be used with exon prediction algorithms.</p
Size and emotion or depth and emotion? Evidence, using Matryoshka (Russian) dolls, of children using physical depth as a proxy for emotional charge
Background: The size and emotion effect is the tendency for children to draw people and other objects with a positive emotional charge larger than those with a negative or neutral charge. Here we explored the novel idea that drawing size might be acting as a proxy for depth (proximity).Methods: Forty-two children (aged 3-11 years) chose, from 2 sets of Matryoshka (Russian) dolls, a doll to represent a person with positive, negative or neutral charge, which they placed in front of themselves on a sheet of A3 paper. Results: We found that the children used proximity and doll size, to indicate emotional charge. Conclusions: These findings are consistent with the notion that in drawings, children are using size as a proxy for physical closeness (proximity), as they attempt with varying success to put positive charged items closer to, or negative and neutral charge items further away from, themselves
A Schwarz lemma for K\"ahler affine metrics and the canonical potential of a proper convex cone
This is an account of some aspects of the geometry of K\"ahler affine metrics
based on considering them as smooth metric measure spaces and applying the
comparison geometry of Bakry-Emery Ricci tensors. Such techniques yield a
version for K\"ahler affine metrics of Yau's Schwarz lemma for volume forms. By
a theorem of Cheng and Yau there is a canonical K\"ahler affine Einstein metric
on a proper convex domain, and the Schwarz lemma gives a direct proof of its
uniqueness up to homothety. The potential for this metric is a function
canonically associated to the cone, characterized by the property that its
level sets are hyperbolic affine spheres foliating the cone. It is shown that
for an -dimensional cone a rescaling of the canonical potential is an
-normal barrier function in the sense of interior point methods for conic
programming. It is explained also how to construct from the canonical potential
Monge-Amp\`ere metrics of both Riemannian and Lorentzian signatures, and a mean
curvature zero conical Lagrangian submanifold of the flat para-K\"ahler space.Comment: Minor corrections. References adde
Physical activity attitudes, intentions and behaviour among 18-25 year olds: a mixed method study
Peer reviewedPublisher PD
Ultrafast nonlocal control of spontaneous emission
Solid-state cavity quantum electrodynamics systems will form scalable nodes
of future quantum networks, allowing the storage, processing and retrieval of
quantum bits, where a real-time control of the radiative interaction in the
cavity is required to achieve high efficiency. We demonstrate here the dynamic
molding of the vacuum field in a coupled-cavity system to achieve the ultrafast
nonlocal modulation of spontaneous emission of quantum dots in photonic crystal
cavities, on a timescale of ~200 ps, much faster than their natural radiative
lifetimes. This opens the way to the ultrafast control of semiconductor-based
cavity quantum electrodynamics systems for application in quantum interfaces
and to a new class of ultrafast lasers based on nano-photonic cavities.Comment: 15 pages, 4 figure
- …