Solid-state cavity quantum electrodynamics systems will form scalable nodes
of future quantum networks, allowing the storage, processing and retrieval of
quantum bits, where a real-time control of the radiative interaction in the
cavity is required to achieve high efficiency. We demonstrate here the dynamic
molding of the vacuum field in a coupled-cavity system to achieve the ultrafast
nonlocal modulation of spontaneous emission of quantum dots in photonic crystal
cavities, on a timescale of ~200 ps, much faster than their natural radiative
lifetimes. This opens the way to the ultrafast control of semiconductor-based
cavity quantum electrodynamics systems for application in quantum interfaces
and to a new class of ultrafast lasers based on nano-photonic cavities.Comment: 15 pages, 4 figure