This is an account of some aspects of the geometry of K\"ahler affine metrics
based on considering them as smooth metric measure spaces and applying the
comparison geometry of Bakry-Emery Ricci tensors. Such techniques yield a
version for K\"ahler affine metrics of Yau's Schwarz lemma for volume forms. By
a theorem of Cheng and Yau there is a canonical K\"ahler affine Einstein metric
on a proper convex domain, and the Schwarz lemma gives a direct proof of its
uniqueness up to homothety. The potential for this metric is a function
canonically associated to the cone, characterized by the property that its
level sets are hyperbolic affine spheres foliating the cone. It is shown that
for an n-dimensional cone a rescaling of the canonical potential is an
n-normal barrier function in the sense of interior point methods for conic
programming. It is explained also how to construct from the canonical potential
Monge-Amp\`ere metrics of both Riemannian and Lorentzian signatures, and a mean
curvature zero conical Lagrangian submanifold of the flat para-K\"ahler space.Comment: Minor corrections. References adde