686 research outputs found
Projective simulation for artificial intelligence
We propose a model of a learning agent whose interaction with the environment
is governed by a simulation-based projection, which allows the agent to project
itself into future situations before it takes real action. Projective
simulation is based on a random walk through a network of clips, which are
elementary patches of episodic memory. The network of clips changes
dynamically, both due to new perceptual input and due to certain compositional
principles of the simulation process. During simulation, the clips are screened
for specific features which trigger factual action of the agent. The scheme is
different from other, computational, notions of simulation, and it provides a
new element in an embodied cognitive science approach to intelligent action and
learning. Our model provides a natural route for generalization to
quantum-mechanical operation and connects the fields of reinforcement learning
and quantum computation.Comment: 22 pages, 18 figures. Close to published version, with footnotes
retaine
Simulating quantum statistics with entangled photons: a continuous transition from bosons to fermions
In contrast to classical physics, quantum mechanics divides particles into
two classes-bosons and fermions-whose exchange statistics dictate the dynamics
of systems at a fundamental level. In two dimensions quasi-particles known as
'anyons' exhibit fractional exchange statistics intermediate between these two
classes. The ability to simulate and observe behaviour associated to
fundamentally different quantum particles is important for simulating complex
quantum systems. Here we use the symmetry and quantum correlations of entangled
photons subjected to multiple copies of a quantum process to directly simulate
quantum interference of fermions, bosons and a continuum of fractional
behaviour exhibited by anyons. We observe an average similarity of 93.6\pm0.2%
between an ideal model and experimental observation. The approach generalises
to an arbitrary number of particles and is independent of the statistics of the
particles used, indicating application with other quantum systems and large
scale application.Comment: 10 pages, 5 figure
Beyond the Jaynes-Cummings model: circuit QED in the ultrastrong coupling regime
In cavity quantum electrodynamics (QED), light-matter interaction is probed
at its most fundamental level, where individual atoms are coupled to single
photons stored in three-dimensional cavities. This unique possibility to
experimentally explore the foundations of quantum physics has greatly evolved
with the advent of circuit QED, where on-chip superconducting qubits and
oscillators play the roles of two-level atoms and cavities, respectively. In
the strong coupling limit, atom and cavity can exchange a photon frequently
before coherence is lost. This important regime has been reached both in cavity
and circuit QED, but the design flexibility and engineering potential of the
latter allowed for increasing the ratio between the atom-cavity coupling rate
and the cavity transition frequency above the percent level. While these
experiments are well described by the renowned Jaynes-Cummings model, novel
physics is expected in the ultrastrong coupling limit. Here, we report on the
first experimental realization of a superconducting circuit QED system in the
ultrastrong coupling limit and present direct evidence for the breakdown of the
Jaynes-Cummings model.Comment: 5 pages, 3 figure
A Comprehensive Workflow for General-Purpose Neural Modeling with Highly Configurable Neuromorphic Hardware Systems
In this paper we present a methodological framework that meets novel
requirements emerging from upcoming types of accelerated and highly
configurable neuromorphic hardware systems. We describe in detail a device with
45 million programmable and dynamic synapses that is currently under
development, and we sketch the conceptual challenges that arise from taking
this platform into operation. More specifically, we aim at the establishment of
this neuromorphic system as a flexible and neuroscientifically valuable
modeling tool that can be used by non-hardware-experts. We consider various
functional aspects to be crucial for this purpose, and we introduce a
consistent workflow with detailed descriptions of all involved modules that
implement the suggested steps: The integration of the hardware interface into
the simulator-independent model description language PyNN; a fully automated
translation between the PyNN domain and appropriate hardware configurations; an
executable specification of the future neuromorphic system that can be
seamlessly integrated into this biology-to-hardware mapping process as a test
bench for all software layers and possible hardware design modifications; an
evaluation scheme that deploys models from a dedicated benchmark library,
compares the results generated by virtual or prototype hardware devices with
reference software simulations and analyzes the differences. The integration of
these components into one hardware-software workflow provides an ecosystem for
ongoing preparative studies that support the hardware design process and
represents the basis for the maturity of the model-to-hardware mapping
software. The functionality and flexibility of the latter is proven with a
variety of experimental results
NeuroML: A Language for Describing Data Driven Models of Neurons and Networks with a High Degree of Biological Detail
Biologically detailed single neuron and network models are important for understanding how ion channels, synapses and anatomical connectivity underlie the complex electrical behavior of the brain. While neuronal simulators such as NEURON, GENESIS, MOOSE, NEST, and PSICS facilitate the development of these data-driven neuronal models, the specialized languages they employ are generally not interoperable, limiting model accessibility and preventing reuse of model components and cross-simulator validation. To overcome these problems we have used an Open Source software approach to develop NeuroML, a neuronal model description language based on XML (Extensible Markup Language). This enables these detailed models and their components to be defined in a standalone form, allowing them to be used across multiple simulators and archived in a standardized format. Here we describe the structure of NeuroML and demonstrate its scope by converting into NeuroML models of a number of different voltage- and ligand-gated conductances, models of electrical coupling, synaptic transmission and short-term plasticity, together with morphologically detailed models of individual neurons. We have also used these NeuroML-based components to develop an highly detailed cortical network model. NeuroML-based model descriptions were validated by demonstrating similar model behavior across five independently developed simulators. Although our results confirm that simulations run on different simulators converge, they reveal limits to model interoperability, by showing that for some models convergence only occurs at high levels of spatial and temporal discretisation, when the computational overhead is high. Our development of NeuroML as a common description language for biophysically detailed neuronal and network models enables interoperability across multiple simulation environments, thereby improving model transparency, accessibility and reuse in computational neuroscience
On Dorsal Prothoracic Appendages in Treehoppers (Hemiptera: Membracidae) and the Nature of Morphological Evidence
A spectacular hypothesis was published recently, which suggested that the “helmet” (a dorsal thoracic sclerite that obscures most of the body) of treehoppers (Insecta: Hemiptera: Membracidae) is connected to the 1st thoracic segment (T1; prothorax) via a jointed articulation and therefore was a true appendage. Furthermore, the “helmet” was interpreted to share multiple characteristics with wings, which in extant pterygote insects are present only on the 2nd (T2) and 3rd (T3) thoracic segments. In this context, the “helmet” could be considered an evolutionary novelty. Although multiple lines of morphological evidence putatively supported the “helmet”-wing homology, the relationship of the “helmet” to other thoracic sclerites and muscles remained unclear. Our observations of exemplar thoraces of 10 hemipteran families reveal multiple misinterpretations relevant to the “helmet”-wing homology hypothesis as originally conceived: 1) the “helmet” actually represents T1 (excluding the fore legs); 2) the “T1 tergum” is actually the anterior dorsal area of T2; 3) the putative articulation between the “helmet” and T1 is actually the articulation between T1 and T2. We conclude that there is no dorsal, articulated appendage on the membracid T1. Although the posterior, flattened, cuticular evagination (PFE) of the membracid T1 does share structural and genetic attributes with wings, the PFE is actually widely distributed across Hemiptera. Hence, the presence of this structure in Membracidae is not an evolutionary novelty for this clade. We discuss this new interpretation of the membracid T1 and the challenges of interpreting and representing morphological data more broadly. We acknowledge that the lack of data standards for morphology is a contributing factor to misinterpreted results and offer an example for how one can reduce ambiguity in morphology by referencing anatomical concepts in published ontologies
Moderate alcohol consumption is associated with better endothelial function: a cross sectional study
<p>Abstract</p> <p>Background</p> <p>Moderate alcohol consumption is protective against coronary artery disease. Endothelial dysfunction contributes to atherosclerosis and the pathogenesis of cardiovascular disease. The effects of alcohol consumption on endothelial function may be relevant to these cardiovascular outcomes, but very few studies have examined the effect of alcohol consumption on endothelial function assessed by flow-mediated dilation (FMD) of the brachial artery in humans.</p> <p>Methods</p> <p>In the population-based Northern Manhattan Study (NOMAS), we performed a cross-sectional analysis of lifetime alcohol intake and brachial artery FMD during reactive hyperemia using high-resolution B-mode ultrasound images among 884 stroke-free participants (mean age 66.8 years, women 56.6%, Hispanic 67.4%, black 17.4%, and white 15.2%).</p> <p>Results</p> <p>The mean brachial FMD was 5.7% and the median was 5.5%. Compared to non-drinkers, those who drank >1 drink/month to 2 drinks/day were more likely to have FMD above the median FMD (5.5%) (unadjusted OR 1.7, 95% CI 1.2–2.4, p = 0.005). In multivariate analysis, the relationship between moderate alcohol consumption and FMD remained significant after adjusting for multiple traditional cardiovascular risk factors, including sex, race-ethnicity, body mass index, diabetes mellitus, coronary artery disease, Framingham risk score, medication use (adjusted OR 1.8, 95%CI 1.1–3.0, p = 0.03). No beneficial effect on FMD was seen for those who drank more than 2 drinks/day.</p> <p>Conclusion</p> <p>In conclusion, consumption of up to 2 alcoholic beverages per day was independently associated with better FMD compared to no alcohol consumption in this multiethnic population. This effect on FMD may represent an important mechanism in explaining the protective effect of alcohol intake on cardiovascular disease.</p
Operative versus non-operative management of pediatric medial epicondyle fractures: a systematic review
There is ongoing debate about the management of medial epicondyle fractures in the pediatric population. This systematic review evaluated non-operative versus operative treatment of medial epicondyle fractures in pediatric and adolescent patients over the last six decades.
A systematic review of the available literature was performed. Frequency-weighted mean union times were used to compare union rates for closed versus open treatments. Moreover, functional outcomes and range-of-motion variables were correlated with varying treatment modalities. Any complications, including ulnar nerve symptoms, pain, instability, infection, and residual deformity, were cataloged.
Fourteen studies, encompassing 498 patients, met the inclusion/exclusion criteria. There were 261 males and 132 female patients; the frequency-weighted average age was 11.93 years. The follow-up range was 6–216 months. Under the cumulative random effects model, the odds of union with operative fixation was 9.33 times the odds of union with non-operative treatment (P < 0.0001). There was no significant difference between operative and non-operative treatments in terms of pain at final follow-up (P = 0.73) or ulnar nerve symptoms (P = 0.412).
Operative treatment affords a significantly higher union rate over the non-operative management of medial epicondyle fractures. There was no difference in pain at final follow-up between operative and non-operative treatments. As surgical indications evolve, and the functional demands of pediatric patients increase, surgical fixation should be strongly considered to achieve stable fixation and bony union
The genomes of two key bumblebee species with primitive eusocial organization
Background: The shift from solitary to social behavior is one of the major evolutionary transitions. Primitively eusocial bumblebees are uniquely placed to illuminate the evolution of highly eusocial insect societies. Bumblebees are also invaluable natural and agricultural pollinators, and there is widespread concern over recent population declines in some species. High-quality genomic data will inform key aspects of bumblebee biology, including susceptibility to implicated population viability threats. Results: We report the high quality draft genome sequences of Bombus terrestris and Bombus impatiens, two ecologically dominant bumblebees and widely utilized study species. Comparing these new genomes to those of the highly eusocial honeybee Apis mellifera and other Hymenoptera, we identify deeply conserved similarities, as well as novelties key to the biology of these organisms. Some honeybee genome features thought to underpin advanced eusociality are also present in bumblebees, indicating an earlier evolution in the bee lineage. Xenobiotic detoxification and immune genes are similarly depauperate in bumblebees and honeybees, and multiple categories of genes linked to social organization, including development and behavior, show high conservation. Key differences identified include a bias in bumblebee chemoreception towards gustation from olfaction, and striking differences in microRNAs, potentially responsible for gene regulation underlying social and other traits. Conclusions: These two bumblebee genomes provide a foundation for post-genomic research on these key pollinators and insect societies. Overall, gene repertoires suggest that the route to advanced eusociality in bees was mediated by many small changes in many genes and processes, and not by notable expansion or depauperation
- …