622 research outputs found
Carbon and greenhouse gas balances in an age sequence of temperate pine plantations
© Author(s) 2014. This study investigated differences in the magnitude and partitioning of the carbon (C) and greenhouse gas (GHG) balances in an age sequence of four white pine (Pinus strobus L.) afforestation stands (7, 20, 35 and 70 years old as of 2009) in southern Ontario, Canada. The 4-year (2004-2008) mean annual carbon dioxide (CO2) exchanges, based on biometric and eddy covariance data, were combined with the 2-year means of static chamber measurements of methane (CH4) and nitrous oxide (N2O) fluxes (2006-2007) and dissolved organic carbon (DOC) export below 1 m soil depth (2004-2005). The total ecosystem C pool increased with age from 46 to 197 t C ha-1 across the four stands. Rates of organic matter cycling (i.e. litterfall and decomposition) were similar among the three older stands. In contrast, considerable differences related to stand age and site quality were observed in the magnitude and partitioning of individual CO2 fluxes, showing a peak in production and respiration rates in the middle-age (20-year-old) stand growing on fertile post-agricultural soil. The DOC export accounted for 10% of net ecosystem production (NEP) at the 7-year-old stand but <2% at the three older stands. The GHG balance from the combined exchanges of CO2, CH4 and N2O was 2.6, 21.6, 13.5 and 4.8 t CO2 equivalent ha-1 yearg-1 for the 7-, 20-, 35- and 70-year-old stands, respectively. The maximum annual contribution from the combined exchanges of CH4 and N2O to the GHG balance was 13 and 8% in the 7- and 70-year-old stands, respectively, but <1% in the two highly productive middle-age (20- and 35-year-old) stands. Averaged over the entire age sequence, the CO2 exchange was the main driver of the GHG balance in these forests. The cumulative CO2 sequestration over the 70 years was estimated at 129 t C and 297 t C ha-1 yearg-1 for stands growing on low- and high-productivity sites, respectively. This study highlights the importance of accounting for age and site quality effects on forest C and GHG balances. It further demonstrates a large potential for net C sequestration and climate benefits gained through afforestation of marginal agricultural and fallow lands in temperate regions
A Stochastic Approach to Shortcut Bridging in Programmable Matter
In a self-organizing particle system, an abstraction of programmable matter,
simple computational elements called particles with limited memory and
communication self-organize to solve system-wide problems of movement,
coordination, and configuration. In this paper, we consider a stochastic,
distributed, local, asynchronous algorithm for "shortcut bridging", in which
particles self-assemble bridges over gaps that simultaneously balance
minimizing the length and cost of the bridge. Army ants of the genus Eciton
have been observed exhibiting a similar behavior in their foraging trails,
dynamically adjusting their bridges to satisfy an efficiency trade-off using
local interactions. Using techniques from Markov chain analysis, we rigorously
analyze our algorithm, show it achieves a near-optimal balance between the
competing factors of path length and bridge cost, and prove that it exhibits a
dependence on the angle of the gap being "shortcut" similar to that of the ant
bridges. We also present simulation results that qualitatively compare our
algorithm with the army ant bridging behavior. Our work gives a plausible
explanation of how convergence to globally optimal configurations can be
achieved via local interactions by simple organisms (e.g., ants) with some
limited computational power and access to random bits. The proposed algorithm
also demonstrates the robustness of the stochastic approach to algorithms for
programmable matter, as it is a surprisingly simple extension of our previous
stochastic algorithm for compression.Comment: Published in Proc. of DNA23: DNA Computing and Molecular Programming
- 23rd International Conference, 2017. An updated journal version will appear
in the DNA23 Special Issue of Natural Computin
Spatiotemporal patterns and environmental drivers of human echinococcoses over a twenty-year period in Ningxia Hui Autonomous Region, China
Background
Human cystic (CE) and alveolar (AE) echinococcoses are zoonotic parasitic diseases that can be influenced by environmental variability and change through effects on the parasites, animal intermediate and definitive hosts, and human populations. We aimed to assess and quantify the spatiotemporal patterns of human echinococcoses in Ningxia Hui Autonomous Region (NHAR), China between January 1994 and December 2013, and examine associations between these infections and indicators of environmental variability and change, including large-scale landscape regeneration undertaken by the Chinese authorities.
Methods
Data on the number of human echinococcosis cases were obtained from a hospital-based retrospective survey conducted in NHAR for the period 1 January 1994 through 31 December 2013. High-resolution imagery from Landsat 4/5-TM and 8-OLI was used to create single date land cover maps. Meteorological data were also collected for the period January 1980 to December 2013 to derive time series of bioclimatic variables. A Bayesian spatio-temporal conditional autoregressive model was used to quantify the relationship between annual cases of CE and AE and environmental variables.
Results
Annual CE incidence demonstrated a negative temporal trend and was positively associated with winter mean temperature at a 10-year lag. There was also a significant, nonlinear effect of annual mean temperature at 13-year lag. The findings also revealed a negative association between AE incidence with temporal moving averages of bareland/artificial surface coverage and annual mean temperature calculated for the period 11–15 years before diagnosis and winter mean temperature for the period 0–4 years. Unlike CE risk, the selected environmental covariates accounted for some of the spatial variation in the risk of AE.
Conclusions
The present study contributes towards efforts to understand the role of environmental factors in determining the spatial heterogeneity of human echinococcoses. The identification of areas with high incidence of CE and AE may assist in the development and refinement of interventions for these diseases, and enhanced environmental change risk assessment
Replicating viral vector platform exploits alarmin signals for potent CD8<sup>+</sup> T cell-mediated tumour immunotherapy.
Viral infections lead to alarmin release and elicit potent cytotoxic effector T lymphocyte (CTL <sup>eff</sup> ) responses. Conversely, the induction of protective tumour-specific CTL <sup>eff</sup> and their recruitment into the tumour remain challenging tasks. Here we show that lymphocytic choriomeningitis virus (LCMV) can be engineered to serve as a replication competent, stably-attenuated immunotherapy vector (artLCMV). artLCMV delivers tumour-associated antigens to dendritic cells for efficient CTL priming. Unlike replication-deficient vectors, artLCMV targets also lymphoid tissue stroma cells expressing the alarmin interleukin-33. By triggering interleukin-33 signals, artLCMV elicits CTL <sup>eff</sup> responses of higher magnitude and functionality than those induced by replication-deficient vectors. Superior anti-tumour efficacy of artLCMV immunotherapy depends on interleukin-33 signalling, and a massive CTL <sup>eff</sup> influx triggers an inflammatory conversion of the tumour microenvironment. Our observations suggest that replicating viral delivery systems can release alarmins for improved anti-tumour efficacy. These mechanistic insights may outweigh safety concerns around replicating viral vectors in cancer immunotherapy
Recommended from our members
Does urbanization explain differences in interactions between an insect herbivore and its natural enemies and mutualists?
Urbanization can alter the composition of arthropod communities. However, little is known about how urbanization affects ecological interactions. Using experimental colonies of the black bean aphid Aphis fabae Scopoli reared on Vicia faba L, we asked if patterns of predator-prey, host-parasitoid and ant-aphid mutualisms varied along an urbanization gradient across a large town in southern England. We recorded the presence of naturally occurring predators, parasitoid wasps and mutualistic ants together with aphid abundance. We examined how biotic (green areas and plant richness) and abiotic features (impervious surfaces and distance to town center) affected (1) aphid colony size, (2) the likelihood of finding predators, mutualistic ants and aphid mummies (indicating the presence of parasitoids), and (3) how the interplay among these factors affected patterns of parasitoid attack, predator abundance, mutualistic interactions and aphid abundance. The best model to predict aphid abundance was the number of mutualistic ants attending the colonies. Aphid predators responded negatively to both the proportion of impervious surfaces and to the number of mutualistic ants farming the colonies, and positively to aphid population size, whereas parasitized aphids were found in colonies with higher numbers of aphids and ants. The number of mutualistic ants attending was positively associated with aphid colony size and negatively with the number of aphid predators. Our findings suggest that for insect-natural enemy interactions, urbanization may affect some groups, while not influencing others, and that local effects (mutualists, host plant presence) will also be key determinants of how urban ecological communities are formed
A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)
Meeting abstrac
Pulmonary Abnormalities in Mice with Paracoccidioidomycosis: A Sequential Study Comparing High Resolution Computed Tomography and Pathologic Findings
Paracoccidioidomycosis (PCM) is a fungal infection caused by the dimorphic fungus Paracoccidioides brasiliensis. It occurs preferentially in rural workers in whom the disease is severe and may cause incapacitating pulmonary sequelae. Assessment of disease progression and treatment outcome normally includes chest x-rays or CT studies. Existing experimental PCM models have focused on several aspects, but none has done a radiologic or image follow-up evaluation of pulmonary lesions considered as the fungus primary target. In this study, the lungs of mice infected with fungal conidia were studied sequentially during the chronic stage of their experimental mycosis by noninvasive high resolution medical computed tomography, and at time of sacrifice, also by histopathology to characterize pulmonary abnormalities. Three basic lung lesion patterns were revealed by both techniques: nodular-diffuse, confluent and pseudo-tumoral which were located mainly around the hilus thus accurately reflecting the situation in human patients. The experimental design of this study decreases the need to sacrifice a large number of animals, and serves to monitor treatment efficacy by means of a more rational approach to the study of human pulmonary diseases. The findings we are reporting open new avenues for experimental research, increase our understanding of the mycosis pathogenesis and consequently have repercussions in patients' care
Structural and Topographic Dynamics of Pulmonary Histopathology and Local Cytokine Profiles in Paracoccidioides brasiliensis Conidia-Infected Mice
Paracoccidioidomycosis (PCM), an endemic fungal infection of pulmonary origin resulting in severe disseminated disease, occurs in rural areas of most South American countries and presents several clinical forms. The infection is acquired by inhalation of specific fungal propagules, called conidia. Considering the difficulties encountered when studying the infection in humans, this work was done in mice infected by inhalation of infective fungal conidia thus mimicking the human natural infection. The lungs of mice were sequentially studied by histopathological and multiplex cytokine methods from 2 h to 16 weeks after infection to verify the course of the disease. The mycosis presented different morphologic aspects during the course of time, affecting several pulmonary compartments. Otherwise and based on the analysis of 30 cytokines, the immune response also showed heterogeneous responses, which were up or down regulated depending on the time of infection. By recognizing the different stages that correspond to the evolution of pulmonary lesions, the severity (benign, chronic or fibrotic) of the disease could be predicted and the probable prognosis of the illness be inferred
Laparoscopy in management of appendicitis in high-, middle-, and low-income countries: a multicenter, prospective, cohort study.
BACKGROUND: Appendicitis is the most common abdominal surgical emergency worldwide. Differences between high- and low-income settings in the availability of laparoscopic appendectomy, alternative management choices, and outcomes are poorly described. The aim was to identify variation in surgical management and outcomes of appendicitis within low-, middle-, and high-Human Development Index (HDI) countries worldwide. METHODS: This is a multicenter, international prospective cohort study. Consecutive sampling of patients undergoing emergency appendectomy over 6 months was conducted. Follow-up lasted 30 days. RESULTS: 4546 patients from 52 countries underwent appendectomy (2499 high-, 1540 middle-, and 507 low-HDI groups). Surgical site infection (SSI) rates were higher in low-HDI (OR 2.57, 95% CI 1.33-4.99, p = 0.005) but not middle-HDI countries (OR 1.38, 95% CI 0.76-2.52, p = 0.291), compared with high-HDI countries after adjustment. A laparoscopic approach was common in high-HDI countries (1693/2499, 67.7%), but infrequent in low-HDI (41/507, 8.1%) and middle-HDI (132/1540, 8.6%) groups. After accounting for case-mix, laparoscopy was still associated with fewer overall complications (OR 0.55, 95% CI 0.42-0.71, p < 0.001) and SSIs (OR 0.22, 95% CI 0.14-0.33, p < 0.001). In propensity-score matched groups within low-/middle-HDI countries, laparoscopy was still associated with fewer overall complications (OR 0.23 95% CI 0.11-0.44) and SSI (OR 0.21 95% CI 0.09-0.45). CONCLUSION: A laparoscopic approach is associated with better outcomes and availability appears to differ by country HDI. Despite the profound clinical, operational, and financial barriers to its widespread introduction, laparoscopy could significantly improve outcomes for patients in low-resource environments. TRIAL REGISTRATION: NCT02179112
- …
