92 research outputs found

    Plasma Apolipoprotein Levels Are Associated with Cognitive Status and Decline in a Community Cohort of Older Individuals

    Get PDF
    <div><h3>Objectives</h3><p>Apolipoproteins have recently been implicated in the etiology of Alzheimer’s disease (AD). In particular, Apolipoprotein J (ApoJ or clusterin) has been proposed as a biomarker of the disease at the pre-dementia stage. We examined a group of apolipoproteins, including ApoA1, ApoA2, ApoB, ApoC3, ApoE, ApoH and ApoJ, in the plasma of a longitudinal community based cohort.</p> <h3>Methods</h3><p>664 subjects (257 with Mild Cognitive Impairment [MCI] and 407 with normal cognition), mean age 78 years, from the Sydney Memory and Aging Study (MAS) were followed up over two years. Plasma apolipoprotein levels at baseline (Wave 1) were measured using a multiplex bead fluorescence immunoassay technique.</p> <h3>Results</h3><p>At Wave 1, MCI subjects had lower levels of ApoA1, ApoA2 and ApoH, and higher levels of ApoE and ApoJ, and a higher ApoB/ApoA1 ratio. Carriers of the apolipoprotein E ε4 allele had significantly lower levels of plasma ApoE, ApoC3 and ApoH and a significantly higher level of ApoB. Global cognitive scores were correlated positively with ApoH and negatively with ApoJ levels. ApoJ and ApoE levels were correlated negatively with grey matter volume and positively with cerebrospinal fluid (CSF) volume on MRI. Lower ApoA1, ApoA2 and ApoH levels, and higher ApoB/ApoA1 ratio, increased the risk of cognitive decline over two years in cognitively normal individuals. ApoA1 was the most significant predictor of decline. These associations remained after statistically controlling for lipid profile. Higher ApoJ levels predicted white matter atrophy over two years.</p> <h3>Conclusions</h3><p>Elderly individuals with MCI have abnormal apolipoprotein levels, which are related to cognitive function and volumetric MRI measures cross-sectionally and are predictive of cognitive impairment in cognitively normal subjects. ApoA1, ApoH and ApoJ are potential plasma biomarkers of cognitive decline in non-demented elderly individuals.</p> </div

    m^6A RNA methylation promotes XIST-mediated transcriptional repression

    Get PDF
    The long non-coding RNA X-inactive specific transcript (XIST) mediates the transcriptional silencing of genes on the X chromosome. Here we show that, in human cells, XIST is highly methylated with at least 78 N^6-methyladenosine (m^6A) residues—a reversible base modification of unknown function in long non-coding RNAs. We show that m^6A formation in XIST, as well as in cellular mRNAs, is mediated by RNA-binding motif protein 15 (RBM15) and its paralogue RBM15B, which bind the m^6A-methylation complex and recruit it to specific sites in RNA. This results in the methylation of adenosine nucleotides in adjacent m^6A consensus motifs. Furthermore, we show that knockdown of RBM15 and RBM15B, or knockdown of methyltransferase like 3 (METTL3), an m^6A methyltransferase, impairs XIST-mediated gene silencing. A systematic comparison of m^6A-binding proteins shows that YTH domain containing 1 (YTHDC1) preferentially recognizes m^6A residues on XIST and is required for XIST function. Additionally, artificial tethering of YTHDC1 to XIST rescues XIST-mediated silencing upon loss of m^6A. These data reveal a pathway of m^6A formation and recognition required for XIST-mediated transcriptional repression

    Impact of Load-Related Neural Processes on Feature Binding in Visuospatial Working Memory

    Get PDF
    BACKGROUND: The capacity of visual working memory (WM) is substantially limited and only a fraction of what we see is maintained as a temporary trace. The process of binding visual features has been proposed as an adaptive means of minimising information demands on WM. However the neural mechanisms underlying this process, and its modulation by task and load effects, are not well understood. OBJECTIVE: To investigate the neural correlates of feature binding and its modulation by WM load during the sequential phases of encoding, maintenance and retrieval. METHODS AND FINDINGS: 18 young healthy participants performed a visuospatial WM task with independent factors of load and feature conjunction (object identity and position) in an event-related functional MRI study. During stimulus encoding, load-invariant conjunction-related activity was observed in left prefrontal cortex and left hippocampus. During maintenance, greater activity for task demands of feature conjunction versus single features, and for increased load was observed in left-sided regions of the superior occipital cortex, precuneus and superior frontal cortex. Where these effects were expressed in overlapping cortical regions, their combined effect was additive. During retrieval, however, an interaction of load and feature conjunction was observed. This modulation of feature conjunction activity under increased load was expressed through greater deactivation in medial structures identified as part of the default mode network. CONCLUSIONS AND SIGNIFICANCE: The relationship between memory load and feature binding qualitatively differed through each phase of the WM task. Of particular interest was the interaction of these factors observed within regions of the default mode network during retrieval which we interpret as suggesting that at low loads, binding processes may be 'automatic' but at higher loads it becomes a resource-intensive process leading to disengagement of activity in this network. These findings provide new insights into how feature binding operates within the capacity-limited WM system

    Is There a Place for Dietary Fiber Supplements in Weight Management?

    Get PDF
    Inadequate dietary fiber intake is common in modern diets, especially in children. Epidemiological and experimental evidence point to a significant association between a lack of fiber intake and ischemic heart disease, stroke atherosclerosis, type 2 diabetes, overweight and obesity, insulin resistance, hypertension, dyslipidemia, as well as gastrointestinal disorders such as diverticulosis, irritable bowel disease, colon cancer, and cholelithiasis. The physiological effects of fiber relate to the physical properties of volume, viscosity, and water-holding capacity that the fiber imparts to food leading to important influences over the energy density of food. Beyond these physical properties, fiber directly impacts a complex array of microbiological, biochemical, and neurohormonal effects directly through modification of the kinetics of digestion and through its metabolism into constituents such as short chain fatty acids, which are both energy substrates and important enteroendocrine ligands. Of particular interest to clinicians is the important role dietary fiber plays in glucoregulation, appetite, and satiety. Supplementation of the diet with highly functional fibers may prove to play an important role in long-term obesity management

    Different Domains of the RNA Polymerase of Infectious Bursal Disease Virus Contribute to Virulence

    Get PDF
    BACKGROUND: Infectious bursal disease virus (IBDV) is a pathogen of worldwide significance to the poultry industry. IBDV has a bi-segmented double-stranded RNA genome. Segments A and B encode the capsid, ribonucleoprotein and non-structural proteins, or the virus polymerase (RdRp), respectively. Since the late eighties, very virulent (vv) IBDV strains have emerged in Europe inducing up to 60% mortality. Although some progress has been made in understanding the molecular biology of IBDV, the molecular basis for the pathogenicity of vvIBDV is still not fully understood. METHODOLOGY, PRINCIPAL FINDINGS: Strain 88180 belongs to a lineage of pathogenic IBDV phylogenetically related to vvIBDV. By reverse genetics, we rescued a molecular clone (mc88180), as pathogenic as its parent strain. To study the molecular basis for 88180 pathogenicity, we constructed and characterized in vivo reassortant or mosaic recombinant viruses derived from the 88180 and the attenuated Cu-1 IBDV strains. The reassortant virus rescued from segments A of 88180 (A88) and B of Cu-1 (BCU1) was milder than mc88180 showing that segment B is involved in 88180 pathogenicity. Next, the exchange of different regions of BCU1 with their counterparts in B88 in association with A88 did not fully restore a virulence equivalent to mc88180. This demonstrated that several regions if not the whole B88 are essential for the in vivo pathogenicity of 88180. CONCLUSION, SIGNIFICANCE: The present results show that different domains of the RdRp, are essential for the in vivo pathogenicity of IBDV, independently of the replication efficiency of the mosaic viruses

    HLA-C and HIV-1: friends or foes?

    Get PDF
    The major histocompatibility complex class I protein HLA-C plays a crucial role as a molecule capable of sending inhibitory signals to both natural killer (NK) cells and cytotoxic T lymphocytes (CTL) via binding to killer cell Ig-like receptors (KIR). Recently HLA-C has been recognized as a key molecule in the immune control of HIV-1. Expression of HLA-C is modulated by a microRNA binding site. HLA-C alleles that bear substitutions in the microRNA binding site are more expressed at the cell surface and associated with the control of HIV-1 viral load, suggesting a role of HLA-C in the presentation of antigenic peptides to CTLs. This review highlights the role of HLA-C in association with HIV-1 viral load, but also addresses the contradiction of the association between high cell surface expression of an inhibitory molecule and strong cell-mediated immunity. To explore additional mechanisms of control of HIV-1 replication by HLA-C, we address specific features of the molecule, like its tendency to be expressed as open conformer upon cell activation, which endows it with a unique capacity to associate with other cell surface molecules as well as with HIV-1 proteins

    Study of 300,486 individuals identifies 148 independent genetic loci influencing general cognitive function

    Get PDF
    Correction Volume: 10, Article Number: 2068 DOI: 10.1038/s41467-019-10160-w WOS:000466339700001General cognitive function is a prominent and relatively stable human trait that is associated with many important life outcomes. We combine cognitive and genetic data from the CHARGE and COGENT consortia, and UK Biobank (total N = 300,486; age 16-102) and find 148 genome-wide significant independent loci (P <5 x 10(-8)) associated with general cognitive function. Within the novel genetic loci are variants associated with neurodegenerative and neurodevelopmental disorders, physical and psychiatric illnesses, and brain structure. Gene-based analyses find 709 genes associated with general cognitive function. Expression levels across the cortex are associated with general cognitive function. Using polygenic scores, up to 4.3% of variance in general cognitive function is predicted in independent samples. We detect significant genetic overlap between general cognitive function, reaction time, and many health variables including eyesight, hypertension, and longevity. In conclusion we identify novel genetic loci and pathways contributing to the heritability of general cognitive function.Peer reviewe

    Leptin, resistin and visfatin: the missing link between endocrine metabolic disorders and immunity

    Get PDF

    Ejection of structural zinc leads to inhibition of γ-butyrobetaine hydroxylase.

    No full text
    γ-Butyrobetaine hydroxylase (BBOX) is a 2-oxoglutarate and Fe(II) dependent oxygenase that catalyses an essential step during carnitine biosynthesis in animals. BBOX is inhibited by ejection of structural zinc by a set of selenium containing analogues. Previous structural analyses indicated that an undisrupted N-terminal zinc binding domain of BBOX is required for catalysis. Ebselen is a relatively potent BBOX inhibitor, an observation which may in part reflect its cardioprotective properties
    corecore