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Abstract

Adipose tissue is still regarded as a principle site for lipid storage and mobilizing tissue with an important role in the
control of energy homeostasis. Additionally, adipose tissue-secreted hormones such as leptin, visfatin, resistin, apelin,
omentin, sex steroids, and various growth factors are now regarded as a functional part of the endocrine system. These
hormones also play an important role in the immune system. Several in vitro and in vivo studies have suggested the
complex role of adipocyte-derived hormones in immune system and inflammation. Adipokines mediate beneficial and
detrimental effects in immunity and inflammation. Many of these adipocytokines have a physiological role in
metabolism. The uncontrolled secretions of several adipocytokines were associated with the stimulation of
inflammatory processes leading to metabolic disorders including obesity, atherosclerosis, insulin resistance and type 2
diabetes. Obesity leads to the dysfunction of adipocytes andcorrelated with the imbalance of adipokines levels. In
obese and diabetic conditions, leptin deficiency inhibited the Jak/Stat3/PI3K and insulin pathways. In this review, ample
evidence exists to support the recognition of the adipocyte’s role in various tissues and pathologies. New integral
insights may add dimensions to translate any potential agents into the future clinical armamentarium of chronic
endocrine metabolic and inflammatory diseases. Functional balance of both adipocytes and immune cells is important
to exert their effects on endocrine metabolic disorders; furthermore, adipose tissue should be renamed not only as a
functional part of the endocrine system but also as a new part of the immune system.
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Introduction
Adipose tissue is a complex network of endocrine organs
that has been divided into white adipose tissue (WAT) and
brown adipose tissue (BAT). WAT is mainly responsible for
the insulation and mechanical support along with the
energy storage function in the body, while BAT specializes
in thermogenesis and lipid oxidation [1]. Activation of BAT
also regulates channel efficiency to undertake triglyceride-
rich lipoprotein (TRL) clearance, as well as to prevent
excess accumulation of lipids in the blood [1].
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The most abundant depots are visceral and subcutaneous
adipose tissues, which produce unique profiles of adipokines
[2]. These molecules are orchestrated by a multifarious
network belonging to different functional categories
such as immunity (complement factors, haptoglobulin),
endocrine function (leptin, adiponectin, visfatin, resistin,
apelin, omentin, sex steroids, various growth factors),
metabolic function (fatty acids, adiponectin, resistin, vaspin),
cardiovascular function (angiotensinogen), fatty acid, and
prostaglandins [3-7].
Adipose tissue secretes many biologically active adipokines

with diverse functions [3]. Adipokines are pharmacologically
active, low molecular weight proteins that exert pleiotropic
functions through several metabolic pathways [8]. Around
the turn of the 20th century several molecular mechanisms
shed light on the importance of adipokines in the hu-
man system. To date, more than 20 different hormones
(both orexigenic and anorexigenic) have been identified.
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Adipokines are important due to their crucial mediator
role and active participation in metabolic functions.
These hormones also easily cross the blood-brain barrier,
reach the main site of action located in the hypothalamic
region, exert their actions and mediate the balance of
satiety and hunger. The adipokines have a central role
in the control of energy metabolism, communicating
the nutrient status of the organism including energy intake
and expenditure as well as insulin sensitivity [9].
Adipokines have several mediators such as adiponectin,

pre-B cell colony-enhancing factor (PBEF) visfatin, leptin,
resistin and retinol-binding protein-4. Adiponectin is an
intriguing adipokine with its serum level inversely corre-
lated with fatness. It is related to the enhancement of insu-
lin sensitivity, anti-inflammatory effects, anti-atherogenic
actions, and regulation of metabolic homeostasis [10].
Recent investigations have also emphasized the importance
of adipocytokines such as interleukin-6 (IL-6), tumor
necrosis factor α (TNFα), plasminogen activator inhibitor-1,
or a chemokine, and monocyte chemoattractant protein-1
(MCP-1). Nuclear factor-kappa B (NF-κB) is a transcription
factor that has the potential to mediate immunity, stress,
apoptosis, cytokines expression, inducible nitric oxide
synthase (iNOS), cyclo-oxygenase 2 (COX-2), cell growth
factors, and development, as well as the potential to play an
important role in central nervous system and cell signaling.
It is also known that NF-κB induces overexpression of
transcriptional systems, which activate inflammation and
develop cancer. NF-κB pathway inhibitors may be a useful
therapeutic strategy to treat inflammation and cancer.
Several studies have shown that lipid accumulation in the
liver leads to hepatic inflammation through NF-κB
activation and downstream cytokine production, which
leads to insulin resistance hepatically, as well as systemically
[11,12]. Some of the adipokines hormones such as leptin,
adiponectin, resistin, and ghrelin play a role in the regula-
tion of glucose metabolism and are involved in the develop-
ment of obesity, diabetes, inflammation, auto-immunity
and metabolic syndromes [13].
The current review summarizes the recent knowledge

regarding the malfunction of adipokines such as leptin,
resistin, and visfatin in the initiation and progression
of many metabolic diseases including obesity, diabetes
and immunity.

Physiological and pro-inflammatory roles of adipokines
The physiological, metabolic and pro-inflammatory role
of different adipokines, such as, leptin, resistin, visfatin
will be discussed individually and according to the role
each plays in diabetes, obesity, and immunity.

Leptin
The discovery of leptin has led to a new era in nutrition
biology. Leptin was discovered in mice in 1994 by Jeffrey
M. Friedman. Leptin is derived from the Greek word
leptos, which means ‘thin’. The serum concentration of
leptin is predominantly defined by body fat mass [14].
Leptin was the first identified adipocytokine, its primary
structure is composed of 167 amino acids, and it is pri-
marily expressed in adipose tissue. Leptin regulates energy
homeostasis and interferes with several neuroendocrine
and immune functions [15]. A higher amount of leptin is
secreted by subcutaneous adipocytes than by the visceral
adipocytes. Its presence has also been detected in many
other tissues, including the placenta, mammary glands,
breast milk, testes, ovaries, endometrium, stomach, hypo-
thalamus, and pituitary gland [16]. Leptin is generally syn-
thesized and secreted by gastric chief cells in the stomach
[17]. Leptin circulating levels are directly proportional to
the body fat. These levels range from 5 to 10 ng/ml in
healthy individuals to 40 to 100 ng/ml in obese individuals
[18]. A transient increase occurs during a meal, whereas
leptin levels decrease with fasting, evoking a profound
changes in energy balance and hormone levels [4,19,20].
The adipose tissue secretes specific proteins including

leptin into the blood stream, which controls body weight
by regulating metabolic behavior. It has a fundamental
role in the control of appetite and also in regulating
energy expenditures [21]. Leptin exerts pleiotropic effects
by binding and activating specific leptin receptors (obR) in
the hypothalamus and other organs. It has direct and
indirect effects in metabolically active tissues and regu-
lates several neuroendocrine axes [22,23]. So far, six
different isoforms of leptin have been identified with
diverse biological actions that range from affecting
blood pressure to affecting immune functions [24,25].
Leptin receptors such as ObRa and ObRb are present
in the brain and regulate metabolic behaviors [26].
Among leptin receptors, mRNA expression of the long
form, ObRb, has been detected in the arcuate (ARC),
dorsomedial (DMH), ventromedial (VMH), and ventral
premamillary nuclei (PMV); moderate expression has
been found in the periventricular hypothalamic nucleus,
in the lateral hypothalamic area (LHA), and at lower levels
of expression in the paraventricular nucleus (PVH) [27].
Early research was focused on leptin and its receptors
in the hypothalamus region and leptin was believed to
be an important regulatory hormone for signaling body
fat status. However, it has become apparent that leptin
receptors are expressed in many normal cell types
throughout the body as well as in malignant cells. It is
noted that the addition of leptin to cells in culture was
found to promote proliferation and to inhibit apoptosis
[27-29]. Leptin has been implicated as a growth factor
for its ability to stimulate angiogenesis in metastatic
breast cancer hypoxic conditions [30]. Angiogenesis is
also a crucial factor in determining obesity and its
related complications [31].
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Resistin
Resistin is another unique adipocyte-derived signaling
cysteine-rich molecule made up of 114 amino acids, and
was first identified in obese mice. The resistin-like mol-
ecule (RELM) gene family is an N-terminal signal peptide.
Resistin (FIZZ3), known as the resistin-like molecules
RELM; RELM, α/FIZZ 1, and RELMβ/FIZZ 2, is involved
in various inflammatory processes [32-34]. In addition,
human resistin has also been detected in tissues like
placenta, skeletal muscle, small intestine, spleen, stomach,
thymus, thyroid gland and uterus [35-37].
Resistin expression was greater in white adipose tissue

than in brown adipose tissue [35]. The resistin in mice is
expressed in white adipose tissue, whereas human
resistin is expressed in adipose tissue at a lower level [38].
However, resistin is predominantly expressed in macro-
phages in humans. Resistin is thus named because of its
resistance to the action of insulin. It has been observed
that circulating resistin levels are increased in obese
humans. It is considered a pro-inflammatory molecule,
which also plays an important role in the pathogenesis
of diabetes and its complications. The release of resistin
is often stimulated by the inflammatory process, IL-6,
hyperglycemia and hormones such as growth hormone
and gonadal hormones [39].

Visfatin
Visfatin, also known as pre-B cell colony-enhancing
factor (PBEF), is a highly conserved, 52-kDa protein
found in living species from bacteria to humans [40].
Visfatin is also called NAMPT because of its significant
sequence and functional homology with nicotinamide
phosphoribosyltransferase (NAm-PRTase), an enzyme
involved in nicotinamide adeninedinucleotide (NAD)
biosynthesis from nicotinamide [41]. It is produced by
the visceral adipose tissue. The expression of visfatin is
increased in individuals with abdominal obesity and
type 2 diabetes [38].

Leptin, resistin and visfatin and their relation to obesity
Leptin and obesity
In recent years a remarkable progress has been made in
the understanding of obesity pathophysiology. The more
recent findings have corroborated that leptin may signify
a link between obesity and metabolic disorders [41]. In
normal mice, the leptin interacts with the products of
leptine receptor (Lepr) locus [42] in the choroid plexus
[43]. It is postulated that leptin deficiency occurs in the
genetically obese Lepob mouse [44].
Genetically obese mice strains were discovered because

of a mutation in the leptin receptor [42]. Lepob mouse have
elevated levels of leptin in serum, which is the hallmark of
the relationship between leptin and its positive association
with body weight, body mass index (BMI), and fat mass
[45-47]. Diabetes (db/db) mice have a deletion in the long
isoform of the leptin receptor; therefore, it is resistant to
leptin [48]. Leptin circulates proportionally to adipocytes,
regulating food intake and energy expenditure through the
expression of ObRb receptors in the central nervous system
(CNS) [49]. In addition, leptin binds to the neuropeptide
neuron in the mediobasal hypothalamus and signals the
brain regarding the adipose stores, producing appropriate
conditions of satiety through neurotransmitters and other
related hormones. Experimental studies have implicated
leptin as a crucial controller of body weight through central
and peripheral pathways [50] because circulating leptin
conveys information to the hypothalamus regarding the
amount of energy stored in adipose tissue; suppresses
the appetite, affects energy expenditure [51], affects
weight reduction; and significantly increases with the
circulating levels of adiponectin. However, the two hor-
mones perform complementary actions, and may have
synergistic effects [52].
The long isoform of the leptin receptor (Ob Rb) is a

vital activator of janus kinase signal transduction and
translation/signal transducer and activator of transcription
(JAK/ STAT) pathway [49]. It has been reported that the
JAK/ STAT pathway is responsible for leptin regulation of
energy homeostasis [53,54]. Suppressor of cytokine signal-
ing 3 (SOCS-3) protein is a negative feedback regulator of
leptin signaling involved in leptin resistance. The potential
mechanism contributing to leptin resistance occurs through
upregulation of SOCS-3 expression by inhibiting the signal
transduction stage of leptin receptor [55,56]. The suppres-
sor of cytokine signaling (SOCS) protein inhibits the JAK-
STAT pathway and leads to leptin resistance and obesity
[57]. In the hypothalamus the phosphatidylinositol 3-kinase
(PI3K) pathway interaction with the JAK2/STAT3 cascade
plays a significant role in the signal transducing leptin
action [58]. In obese conditions the leptin resistance
downregulates the Src/PI3K/Akt pathway [59]. Obstruction
of the Jak/Stat3/PI3K-dependent pathways upregulates the
effects of vascular endothelial growth factor (VEGF) to
enhance angiogenesis in adipocytes [60-62]. In mice, such a
disrupted JAK/STAT pathway results in an increased food
intake and accumulation of adipose tissue [53]. Buettner
et al. has reported that the restoration of STAT3 signaling
is an effective therapy for leptin defective diseases [63].
In obese condition, leptin resistance is accompanied by
hyperinsulinemia and insulin resistance [64] (Figure 1).

Resistin and obesity
Serum resistin was positively correlated with changes of
BMI and body adipose mass. Circulating resistin levels
increase with age, probably reflecting the increase in the
body fat content [65]. With human obesity elevated
serum resistin levels were observed when compared with
humans in lean condition [66]. Resistin is involved in



Figure 1 Obstruction of Jak/Stat3/PI3K-dependent pathways stimulated VEGF to stimulate angiogenesis in adipocytes thereby leading
to obesity.
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the proliferation of adiposities and angiogenesis [66-69].
Obesity is associated with abnormally elevated JNK activity,
predominantly provided by JNK1. It is a vital component of
the obesity-induced insulin resistance pathway in vivo [70].
Scientists have suggested that resistin is a hormone that
links obesity to diabetes. Experiments in humans have
shown no differences in resistin expression among normal,
insulin-resistant, and type 2 diabetic samples. However,
some recent genetic studies have demonstrated an associ-
ation between resistin and insulin resistance and obesity
[71]. Resistin has been shown to antagonize insulin action.
Resistin levels are increased in diet-induced obesity as well
as in genetic models of obesity and insulin resistance. Also,
resistin gene expression is markedly down-regulated by
treatment with anti-diabetic drugs called thiazolidinediones
that improve target-tissue sensitivity to insulin. It was found
that human abdominal adipose tissue has a higher amount
of resistin mRNA than other fat depots [72]. Abdominal
adipose tissue is thought to be a main risk factor for insulin
resistance. It has also been reported that resistin is
expressed in the hypothalamus and is able to activate
hypothalamic neurons [73,74]. Another study showed that
central administration of resistin resulted in increased
number of cells expressing Fos (c-Fos is a protein encoded
by the FOS gene) in the arcuate nucleus and promoted
short-term satiety in rats [75].

Visfatin and obesity
Several studies have observed no difference in visfatin
mRNA expression in visceral and subcutaneous adipose
tissue in humans [75]. However, other studies confirmed
an increased level of circulating visfatin whereas results
from other studies were contradictory in that they
showed lower levels of plasma visfatin in obese subjects
[76-80]. It was also reported that overnutrition
downregulated circulating visfatin concentrations in
humans [81]. The controversial findings on visfatin
levels as a result of obesity and metabolic syndrome,
suggest that an increased [82], a decreased [83,84], or
unchanged level of visfatin-induced endothelial angio-
genesis occurs through mediating VEGF, MMP, MAPK
and PI3K/Akt signaling pathways [85].
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The relation of leptin, resistin and visfatin with diabetes
Leptin and diabetes
Leptin deficiency not only leads to obesity, but also to
diabetes and to reproductive dysfunction. An interruption
of hepatic metabolism of glucose, fatty acids, and lipopro-
teins in the leptin-deficient obese (Lepob/ob) mouse leads to
hyperglycemia, steatosis, and hypercholesterolemia [86].
Leptin and insulin levels are directly interconnected with
body weight and adipose tissue [87]. Leptin has impressive
effects on the energy homeostasis, including regulation of
insulin secretion by pancreatic β cells [88]. In the brain,
insulin and leptin act to inhibit the appetite [89]. Leptin
may also directly affect the metabolism and function of
peripheral tissues. Leptin has been implicated in causing
peripheral insulin resistance by attenuating insulin action,
and perhaps insulin signaling, in various insulin-responsive
cell types. Additionally, various researchers have dem-
onstrated a significant relationship between leptin and
insulin [90].
Insulin and leptin influence the glucose metabolism by

acting at a peripheral and central level [91]. They act as
adiposity signals and play a pivotal role in the central
regulation of energy homeostasis [92]. Both hormones
circulate at proportional levels to body fat and regulate
food intake and energy expenditure by interacting with
their respective receptors [93]. Levi et al. reported that
leptin administration was able to increase plasma
IGFBP-2 levels and improve glucose homeostasis in both
ob/ob mouse models [94].
Early reports showed that insulin and leptin play a

significant role in diabetic condition by activating the
insulin receptor substrate (IRS)-PI3K pathway (Figure 2).
Schultze et al. reported that the development of insulin
resistance and T2DM occurs with stimulated PI3K and
downregulation of IRS proteins [95]. Insulin acts by modu-
lating glucose metabolism via the STAT3 permissive effect.
Initiation of STAT3 is necessary for the P13K activation
[96]. Akt is a critical central mediator that acts along with
PI3K for insulin signaling [97]. In addition, PI3K and Akt
involve in insulin-stimulated translocation of the glucose
transporter type 4 (GLUT4) [98,99].
Under normal circumstances, GLUT4 is responsible

for insulin-stimulated glucose uptake from circulation
into skeletal muscle [100]. It is reported that GLUT4
levels are reduced in the muscle of Type 2 diabetic con-
dition [101]. Glucose uptake is regulated by GLUT4 and
retained by activated PI3K [102]. Glucose uptake into
the cells is stimulated by insulin and leptin activating the
JAK2/IRS/PI3K/AKT signaling pathway [103] and trig-
gering the translocation of the GLUT4 from the cytosol
to the cell surface [104] Downregulation of PI3K and
AKT indicates an insufficiency of insulin to maintain the
normal signaling [105] and downregulates the intake of
glucose through GLUT4 in the muscles, which results in
hyperglycemia [106]. Glycogen synthase kinase-3 (GSK-3)
is a serine/threonine protein kinase that has multiple
negative impacts in insulin-mediated metabolic diseases
[107,108]. GSK-3 adversely affects the insulin role by
hindering activation of glycogen synthase, leading to the
accrual of glycogen in the muscle [109].
AMP-activated protein kinase (AMPK) is an imperative

enzyme in leptin signaling related to PI3K pathway [110].
Both PI3K/AKT and AMPK are involved in regulating
glucose homeostasis [95]. In normal condition, AMPK
stimulates catabolism and impedes anabolic pathways.
Leptin deficiencies decrease the AMPK activity in the
liver but increase its activity in the hypothalamus of the
diabetic rat, thereby resulting in diabetic hyperphagia
[111]. In diabetic ob/ob mice, the insulin signaling path-
ways were deregulated, which are found to be reinstated
by systematic leptin treatment [112].
Apart from the diabetes, leptin also affects a variety of

other physiological functions, including fertility, bone
metabolism, and immune responses [113].

Resistin and diabetes
The role of adipocyte hormones in modulating insulin
sensitivity and glucose tolerance are of common interest
and importance in studies of type 2 diabetes mellitus.
Recently, resistin has been proposed to play an important
role in the pathogenesis of obesity-related insulin resistance
[114]. Previous studies have postulated the controversial
role of resistin in obesity and insulin resistance. Some stud-
ies have shown a positive correlation with body fat mass
and insulin resistance [114,115], whereas others have found
no correlation with body mass index (BMI) or insulin sen-
sitivity [116,117]. Resistin is expressed in pre-adipocytes
and adipocytes, which may promotes resistin elevation in
the adipose tissue of obese human [117,118]. Resistin is
produced primarily by adipose tissue and may act at sites
distant from where it is produced. In humans, insulin
resistances are positively correlated with expression of
resistin [119]. In diabetic patients, serum levels of resistin
are nearly 50 ng/ml. Resistin increases insulin resistance
with respect to carbohydrate metabolism [120].
An elevated expression of resistin in circulation leads

to glucose intolerance, hyperinsulinemia related with
impaired insulin signaling in skeletal muscle, liver, and
adipose tissue. The important role of AMPK in the liver is
to stimulate the fatty acid oxidation, thwart cholesterol
synthesis and intonate insulin secretion by pancreatic
β cells. Resistin inhibits the phosphorylation of the
hepatic AMPK pathway that downregulates β oxidation to
lipid accumulations [121]. Subsequently, resistin stimulates
SOCS-3 in mice adipose [122]. The stimulated SOCS-3
inhibits the insulin signaling pathway in tissues. Moreover,
resistin affects glycogen metabolism, leading to type 2
diabetes [123].



Figure 2 Leptin deficiency disturbs the insulin signaling pathway JAK2/IRS/PI3K/AKT/AMPK and triggers diabetes.
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An elevated level of circulating resistin was detected in
obesity and diabetes. This discovery suggests that
deregulation of resistin induces insulin resistance in
genetic models (ob/ob and db/db) and in a diet-induced
model of diabetes and obesity. Studies have shown that
loss of resistin in obesity decreases the blood glucose
levels and improves insulin sensitivity [124]. Paradoxically,
db/db mice were not found with elevated levels of resistin
when compared with the control group, nor has variation
in resistin mRNA levels been reported in ob/ob mice. This
means that some oversecretion of resistin from adipocytes
may decrease the total number of resistin per cells,
highlighting the tissue and cell-specific effect of resistin
[123,125]. In humans, resistin is primarily released by
monocytes/macrophages, suggesting that soluble levels may
be associated with macrophage activation. Here, systemic
and monocyte-released resistin levels were found to be
similar in type 2 diabetic patients, overweight controls
and normal-weight controls [126]. The aforementioned
results strongly support the role of human resistin in
the development of insulin resistance and inflammation.
Thus, human resistin may be linked from insulin resistance
to inflammatory diseases such as obesity, type 2 diabetes,
and atherosclerosis [127].

Visfatin and diabetes
In adipokines, resistin is considered important for their
pro-inflammatory effects. Alternatively, visfatin is known
for insulin-mimetic/sensitizing effects. It is overexpressed
in the route of adipocyte differentiation. Studies have
shown that the synthesis and secretion of visfatin is modu-
lated by glucocorticoids, TNFα, IL-6, and growth factors.
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This means that visfatin is upregulated in the course of
pro-inflammatory cytokines and under inflammatory con-
ditions. Also, the findings of McGee et al. have suggested
that visfatin may represent a pro-inflammatory cytokine
that is influenced by insulin/insulin sensitivity via the
NF-κB and JNK pathways [128].
The biological role of visfatin is not entirely understood,

but several studies indicated glucose lowering and
insulin-mimicking/-sensitizing effects of visfatin. Heterozy-
gous mice with a target mutation in the visfatin gene had
modestly higher levels of plasma glucose impaired glucose
tolerance and reduced glucose-stimulated insulin secretion
relative to control mice [128]. But there was no significant
correlation of plasma visfatin levels and parameters of
insulin sensitivity, including fasting insulin, fasting plasma
glucose concentrations, and the glucose infusion rate dur-
ing the steady state of a euglycemic hyperinsulinemic clamp
independent of percent body fat. There are also conflicting
data on visfatin circulating levels in obese humans.

The relation of leptin, resistin and visfatin with immunity
Leptin and immunity
Leptin’s role in immune responses has been recently
reviewed. It modulates the monocytes/macrophages,
neutrophils, basophils, eosinophils, natural killer and
dendritic cells. Leptin modifies T-cell balance, induces
T-cell activation, and changes the pattern of T-cell cyto-
kine production by driving T-cell differentiation towards
a T-helper1(TH1) response. This led to studies of the
pro-inflammatory role of leptin in several animal models
of autoimmune /inflammatory conditions. Studies have
shown that leptin modulation in the immune system is
mediated at development, proliferation, maturation and
production levels [129]. However, the functional role of
leptin is abrogated in the immune cells through the
modulation of multiple signaling pathways, including
STAT-3, PI3K, and P38 mitogen-activated protein kinase
(MAPK) [130]. In fact, leptin and leptin receptors have
pleiotropic effects in immune cells, promoting T-helper
1 responses, natural killer cell cytotoxicity, and production
of inflammatory cytokines such as C-reactive protein
(CRP), IL-6, TNFα, and serum amyloid A [131]. It is
believed that leptin is a pro-inflammatory adipokine that
induces T helper 1 cells and may contribute to the devel-
opment and progression of autoimmune responses [132].
Leptin receptor is also upregulated by aforementioned
pro-inflammatory signals [133]. Results showed that
peripheral rather than central leptin treatment was able to
significantly increase numbers of granulocytes, Nutral
Killer cells (NK) cells and monocytes [134]. Furthermore,
it characterized NK cell differentiation and maturation in
the bone marrow of leptin-receptor deficient db/db mice
at a prediabetic stage [135]. Leptin signaling regulates NK
cell development via enhancing the survival of immature
NK cells in mouse bone marrow. A lot of compelling evi-
dence has shown that leptin is the connection between nu-
tritional status and immune competence. Leptin has been
shown to regulate the immune responses in innate and
adaptive response in normal and pathological conditions
[134]. A study of adult leptin receptor-defective (db/db)
mice demonstrated a significant reduction of both NK cell
numbers and NK cytotoxic capacity compared with
wild-type mice. Treatment of NK (CD56+) cells with
leptin enhanced CD69 expression and stimulated splenic
NK cytotoxicity in wild-type mice, but not in db/db
mice. Furthermore, the decreased number of NK cells in
the db/db mice has confirmed the role of leptin in the
maturation of NK cells [136]. On the other hand, leptin-
activating pro-inflammatory cytokines such as IL-6 and
TNF-α protect Ob/ob mice from T cell hepatotoxicity
[136]. Leptin mediate the inflammatory infiltrate and
could act as a monocyte/ macrophage chemoattractant, in-
ducing in vitro maximal chemotactic responses at 1 ng/mL
[137] and inducing tissue-factor expression in human
peripheral blood mononuclear cells [138]. Epidemiological
observations indicated that reduced leptin production is
closely associated with increased infection, which is the
major cause of inflammatory or immunodeficiency diseases.
Indeed, starvation or malnutrition is one of the human
health concerns that increased the vulnerability to infec-
tions [132]. Conversely, immune-mediated disorders such
as autoimmune diseases are associated with increased
secretion of leptin and production of pro-inflammatory
pathogenic cytokines. Thus, leptin is a mediator of the in-
flammatory response [139]. Furthermore, leptin treatment
directly affects the lymphocytes and increases the differenti-
ation and proliferation of CD4+ Tcells [140].
Leptin appears to modulate TH cells and leading to

stimulate TH1 production of some cytokines: interleukin
2 IL-2, interferon gamma (IFN-γ), TNF-α and IL-18, and
inhibits the production of TH2 cytokines: IL-4, IL-5 and
IL-10 [140], But T lymphocytes from db/db mice do not
show the same result, which supports the idea of the
direct effect involving the expression of leptin receptors
on the T lymphocytes [141]. Currently, leptin replacement
therapy enhanced T-cell responsiveness and inducing
T-helper 1 cells and may contribute to the development
and progression of autoimmune responses [132]. Mod-
ifications in the relative proportions of the lymphocyte
classes depend on the degree of obesity, or on leptin
concentration, or even fat depot anatomical location. It
is suggested that alterations in the number and com-
position of lymphocytes precede an increase in macro-
phages and enhance the inflammatory state of WAT
found in obesity. Lymphocytes express receptors to
adipokines while several pro-inflammatory chemokines
are produced in WAT, rendering intricate crosstalk
between fat and immune cells [142].
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Resistin and immunity
More recently, it was found that high resistin levels
predicted favorable anti-inflammatory effects of inhaled
glucocorticoids suggesting that resistin may be a marker
of a steroid-sensitive phenotype in asthma [143]. Resistin
might contribute to the inflammatory conditions by
mediating enhanced activation of cytokines (IL-6, TNFα)
and NF-κB [124]. Analyses of resistin gene expression
across a wide array of human tissues revealed that per-
ipheral blood mononuclear cells (PBMCs), macrophages
and bone marrow cells are the major sources of hu-
man resistin [36,144]. Several studies demonstrated
that inflammatory stimuli mediate resistin production.
In human PBMCs, pro-inflammatory cytokines such as
IL-1, IL-6 and TNF- α, as well as Lipopolysaccharides
(LPS), have strongly induced resistin mRNA expression
[144]. Resistin significantly enhanced the hepatic in-
flammation and necrosis in LPS-induced liver damage
in mice. This effect of resistin was presumably mediated
via activation mechanisms involving the coagulation
cascade and fibrin accumulation [145]. Resistin is likely
to play an important role in chronic inflammatory and
autoimmune diseases [146]. An increased level of circu-
lating resistin was also observed in patients with chronic
pancreatitis, suggesting its impact on pancreatic fibrosis
development [147]. However, circulating resistin levels
were clearly associated with general inflammation, renal
disease, treatment with glucocorticoids, and bone loss
in systemic lupus erythematosus patients [148].
Visfatin and immunity
Visfatin is not only an adipocyte-specific protein; its
expression gene was originally found in human peripheral
blood lymphocytes. It increases the effect of IL-7 and
stem-cell factor on pre-B cell colony formation [149].
Visfatin appears to be an important mediator of inflam-
mation. It is demonstrated that recombinant visfatin
induced dose-dependent production of pro-inflammatory
IL-1β, TNF-α, and IL-6 as well as anti-inflammatory cyto-
kines like IL-10, and IL-1 receptor antagonist in human
monocytes. In vivo intraperitoneal injections of recombin-
ant murine visfatin significantly increased circulating IL-6
levels and IL-6 mRNA expression in the small intestine in
mice [150]. Other studies demonstrated that visfatin was
also synthesized and released by neutrophils in response to
inflammatory stimuli and that it functioned as an inhibitor
of apoptosis resulting from variety of inflammatory stimuli.
Visfatin was expressed at high levels in neutrophils
harvested from septic critically ill patients and contributed
to prolonged neutrophil survival in clinical sepsis [151].
The physiology of visfatin revealed that it is upregulated in
the acute lung injury and sepsis as well as in inflammatory
bowel disease [152].
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General physiological functions of leptin and other
adipocytokines are important in mediating the physio-
logical role of adipose tissue in different models. Either
adipocytes or immune cells and their secretory and
metabolic activities should be taken under consideration
(Figures 3) [11]. Therefore, immunotherapy deserves to be
considered as a promising approach to treat the endocrino-
metabolic disorders associated with excessive fat mass
development.
Important advances in our understanding of the rela-

tionships among adipokinesmetabolism and the immune
response have been clarified in the past 10 years. White
adipose tissue has served as a highly active organ that
releases a plethora of immune and inflammatory mediators
that are involved in many diseases [153].

Future prospects
Several in vitro and in vivo experiments have confirmed
that adipokines have numerous important functions in the
body. Research in this area is increasing and tremendous
efforts have been made in exploring the physiological
mechanisms of adipokines action in metabolic disorders
andinflammatory autoimmune disorders. The exact
mechanisms and the roles of adipokines remain hazy,
and future research will further underpin the potential
prospects for therapeutic action.
Much compelling evidence has shown the promotion

of inflammation by elevating levels of leptin and resistin.
It is conceivable that control of circulating levels of
leptin and resistin might prevent inflammatory diseases.
Leptin receptor could be stopped from activation with
antibodies or legend This means the energy intake role
of leptin should not be perturbed because development
of hyperphagia and obesity might occur. At present,
different studies are underway that are designed to gain
insights into the known adipokines, their genetic bases
and the cellular events that are taking place in the
promotion of inflammatory ailments through the modu-
lation of the adipokines. However, many questions need
to be addressed before adipokines can be used as
therapeutic targets in inflammatory complications. The
depth of the mechanism and the signaling pathways of
adipokines presented here are still incomplete and need
future attention to elaborate the specific role of each
adipokine. Nevertheless, studies that are able to clarify
the role of adipokines in the different models, may
demonstrate that these adipokines can indeed be essential
targets for pharmacotherapeutic agents for the treatment
of obesity-induced inflammatory diseases.

Conclusions
Physiological functions of adipocytokines and cytokines
have principle roles in different styles and tissues.
Adipokines (leptin, resistin and visfatin) could serve as a
missing link in the causal relationship between psoriasis
and comorbidities and may provide a biomarker for disease
severity such as obesity and diabetes, risk of comorbidities
and treatment success. Additionally, adipocytokines have
numerous anti-inflammatory actions. Visfatin also mimics
insulin effects. The functional balance of adipocytes and
immune cells that is needed for them to exert their
metabolic activities should be taken under consideration.
Development of novel therapeutic procedures for obesity
and obesity-associated diseases possibly could be achieved
through an integral insight into leptin, resistin and visfatin,
as well as insight into other adipokine functions and their
links to inflammation.
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