178 research outputs found
First Detection of Gas-phase Methanol in a Protoplanetary Disk
The first detection of gas-phase methanol in a protoplanetary disk (TW Hya) is presented. In addition to being one of the largest molecules detected in disks to date, methanol is also the first disk organic molecule with an unambiguous ice chemistry origin. The stacked methanol emission, as observed with the Atacama Large Millimeter/submillimeter Array, is spectrally resolved and detected across six velocity channels (> 3σ ), reaching a peak signal-to-noise of 5.5σ , with the kinematic pattern expected for TW Hya. Using an appropriate disk model, a fractional abundance of 3× 10⁻¹²-4× 10⁻¹¹ (with respect to H₂) reproduces the stacked line profile and channel maps, with the favored abundance dependent upon the assumed vertical location (midplane versus molecular layer). The peak emission is offset from the source position, suggesting that the methanol emission has a ring-like morphology: the analysis here suggests it peaks at ≈ 30 au, reaching a column density ≈ 3-6× 10¹² cm⁻². In the case of TW Hya, the larger (up to millimeter-sized) grains, residing in the inner 50 au, may thus host the bulk of the disk ice reservoir. The successful detection of cold gas-phase methanol in a protoplanetary disk implies that the products of ice chemistry can be explored in disks, opening a window into studying complex organic chemistry during planetary system formation
ALMA Observations of Asteroid 3 Juno at 60 Kilometer Resolution
We present Atacama Large Millimeter/submillimeter Array (ALMA) 1.3 mm
continuum images of the asteroid 3 Juno obtained with an angular resolution of
0.042 arcseconds (60 km at 1.97 AU). The data were obtained over a single 4.4
hr interval, which covers 60% of the 7.2 hr rotation period, approximately
centered on local transit. A sequence of ten consecutive images reveals
continuous changes in the asteroid's profile and apparent shape, in good
agreement with the sky projection of the three-dimensional model of the
Database of Asteroid Models from Inversion Techniques. We measure a geometric
mean diameter of 259pm4 km, in good agreement with past estimates from a
variety of techniques and wavelengths. Due to the viewing angle and inclination
of the rotational pole, the southern hemisphere dominates all of the images.
The median peak brightness temperature is 215pm13 K, while the median over the
whole surface is 197pm15 K. With the unprecedented resolution of ALMA, we find
that the brightness temperature varies across the surface with higher values
correlated to the subsolar point and afternoon areas, and lower values beyond
the evening terminator. The dominance of the subsolar point is accentuated in
the final four images, suggesting a reduction in the thermal inertia of the
regolith at the corresponding longitudes, which are possibly correlated to the
location of the putative large impact crater. These results demonstrate ALMA's
potential to resolve thermal emission from the surface of main belt asteroids,
and to measure accurately their position, geometric shape, rotational period,
and soil characteristics.Comment: 8 pages, 3 figures, 2 tables, accepted for publication in the
  Astrophysical Journal Letter
ALMA Long Baseline Observations of the Strongly Lensed Submillimeter Galaxy HATLAS J090311.6+003906 at z=3.042
We present initial results of very high resolution Atacama Large
Millimeter/submillimeter Array (ALMA) observations of the =3.042
gravitationally lensed galaxy HATLAS J090311.6+003906 (SDP.81). These
observations were carried out using a very extended configuration as part of
Science Verification for the 2014 ALMA Long Baseline Campaign, with baselines
of up to 15 km. We present continuum imaging at 151, 236 and 290 GHz, at
unprecedented angular resolutions as fine as 23 milliarcseconds (mas),
corresponding to an un-magnified spatial scale of ~180 pc at z=3.042. The ALMA
images clearly show two main gravitational arc components of an Einstein ring,
with emission tracing a radius of ~1.5". We also present imaging of CO(10-9),
CO(8-7), CO(5-4) and H2O line emission. The CO emission, at an angular
resolution of ~170 mas, is found to broadly trace the gravitational arc
structures but with differing morphologies between the CO transitions and
compared to the dust continuum. Our detection of H2O line emission, using only
the shortest baselines, provides the most resolved detection to date of thermal
H2O emission in an extragalactic source. The ALMA continuum and spectral line
fluxes are consistent with previous Plateau de Bure Interferometer and
Submillimeter Array observations despite the impressive increase in angular
resolution. Finally, we detect weak unresolved continuum emission from a
position that is spatially coincident with the center of the lens, with a
spectral index that is consistent with emission from the core of the foreground
lensing galaxy.Comment: 9 pages, 5 figures and 3 tables, accepted for publication in the
  Astrophysical Journal Letter
ALMA Observations of a Gap and a Ring in the Protoplanetary Disk around TW Hya
We report the first detection of a gap and a ring in 336 GHz dust continuum emission from the protoplanetary disk around TW Hya, using the Atacama Large Millimeter/Submillimeter Array (ALMA). The gap and ring are located at around 25 and 41 au from the central star, respectively, and are associated with the CO snow line at ∼30 au. The gap has a radial width of less than 15 au and a mass deficit of more than 23%, taking into account that the observations are limited to an angular resolution of ∼15 au. In addition, the 13CO and C18O J=3-2 lines show a decrement in CO line emission throughout the disk, down to ∼10 au, indicating a freeze-out of gas-phase CO onto grain surfaces and possible subsequent surface reactions to form larger molecules. The observed gap could be caused by gravitational interaction between the disk gas and a planet with a mass less than super-Neptune (2{M}{{Neptune}}), or could be the result of the destruction of large dust aggregates due to the sintering of CO ice
A Gap with a Deficit of Large Grains in the Protoplanetary Disk around TW Hya
We report ∼3 au resolution imaging observations of the protoplanetary disk around TW Hya at 145 and 233 GHz with the Atacama Large Millimeter/submillimeter Array. Our observations revealed two deep gaps (∼25%-50%) at 22 and 37 au and shallower gaps (a few percent) at 6, 28, and 44 au, as recently reported by Andrews et al. The central hole with a radius of ∼3 au was also marginally resolved. The most remarkable finding is that the spectral index α(R) between bands 4 and 6 peaks at the 22 au gap. The derived power-law index of the dust opacity β(R) is ∼1.7 at the 22 au gap and decreases toward the disk center to ∼0. The most prominent gap at 22 au could be caused by the gravitational interaction between the disk and an unseen planet with a mass of ≲1.5 M Neptune, although other origins may be possible. The planet-induced gap is supported by the fact that β(R) is enhanced at the 22 au gap, indicating a deficit of ∼millimeter-sized grains within the gap due to dust filtration by a planet
First Results from High Angular Resolution ALMA Observations Toward the HL Tau Region
We present Atacama Large Millimeter/submillimeter Array (ALMA) observations
from the 2014 Long Baseline Campaign in dust continuum and spectral line
emission from the HL Tau region. The continuum images at wavelengths of 2.9,
1.3, and 0.87 mm have unprecedented angular resolutions of 0.075 arcseconds (10
AU) to 0.025 arcseconds (3.5 AU), revealing an astonishing level of detail in
the circumstellar disk surrounding the young solar analogue HL Tau, with a
pattern of bright and dark rings observed at all wavelengths. By fitting
ellipses to the most distinct rings, we measure precise values for the disk
inclination (46.72pm0.05 degrees) and position angle (+138.02pm0.07 degrees).
We obtain a high-fidelity image of the 1.0 mm spectral index (), which
ranges from  in the optically-thick central peak and two
brightest rings, increasing to 2.3-3.0 in the dark rings. The dark rings are
not devoid of emission, we estimate a grain emissivity index of 0.8 for the
innermost dark ring and lower for subsequent dark rings, consistent with some
degree of grain growth and evolution. Additional clues that the rings arise
from planet formation include an increase in their central offsets with radius
and the presence of numerous orbital resonances. At a resolution of 35 AU, we
resolve the molecular component of the disk in HCO+ (1-0) which exhibits a
pattern over LSR velocities from 2-12 km/s consistent with Keplerian motion
around a ~1.3 solar mass star, although complicated by absorption at low
blue-shifted velocities. We also serendipitously detect and resolve the nearby
protostars XZ Tau (A/B) and LkHa358 at 2.9 mm.Comment: 11 pages, 5 figures, 2 tables, accepted for publication in the
  Astrophysical Journal Letter
Imaging the water snow-line during a protostellar outburst
A snow-line is the region of a protoplanetary disk at which a major volatile, such as water or carbon monoxide, reaches its condensation temperature. Snow-lines play a crucial role in disk evolution by promoting the rapid growth of ice-covered grains^1, 2, 3, 4, 5, 6. Signatures of the carbon monoxide snow-line (at temperatures of around 20 kelvin) have recently been imaged in the disks surrounding the pre-main-sequence stars TW Hydra^7, 8, 9 and HD163296 (refs 3, 10), at distances of about 30 astronomical units (au) from the star. But the water snow-line of a protoplanetary disk (at temperatures of more than 100 kelvin) has not hitherto been seen, as it generally lies very close to the star (less than 5 au away for solar-type stars^11). Water-ice is important because it regulates the efficiency of dust and planetesimal coagulation5, and the formation of comets, ice giants and the cores of gas giants^12. Here we report images at 0.03-arcsec resolution (12 au) of the protoplanetary disk around V883 Ori, a protostar of 1.3 solar masses that is undergoing an outburst in luminosity arising from a temporary increase in the accretion rate^13. We find an intensity break corresponding to an abrupt change in the optical depth at about 42 au, where the elevated disk temperature approaches the condensation point of water, from which we conclude that the outburst has moved the water snow-line. The spectral behaviour across the snow-line confirms recent model predictions^14: dust fragmentation and the inhibition of grain growth at higher temperatures results in soaring grain number densities and optical depths. As most planetary systems are expected to experience outbursts caused by accretion during their formation^15, 16, our results imply that highly dynamical water snow-lines must be considered when developing models of disk evolution and planet formation
Candidate Water Vapor Lines to Locate the H2O Snowline through High-dispersion Spectroscopic Observations. III. Submillimeter H2 16O and H2 18O Lines
In this paper, we extend the results presented in our former papers on using ortho-H216O line profiles to constrain the location of the H2O snowline in T Tauri and Herbig Ae disks, to include submillimeter para-H216O and ortho- and para-H218O lines. Since the number densities of the ortho- and para-H218O molecules are about 560 times smaller than their 16O analogs, they trace deeper into the disk than the ortho-H216O lines (down to z = 0, i.e., the midplane). Thus these H218O lines are potentially better probes of the position of the H2O snowline at the disk midplane, depending on the dust optical depth. The values of the Einstein A coefficients of submillimeter candidate water lines tend to be lower (typically <10‑4 s‑1) than infrared candidate water lines. Thus in the submillimeter candidate water line cases, the local intensity from the outer optically thin region in the disk is around 104 times smaller than that in the infrared candidate water line cases. Therefore, in the submillimeter lines, especially H218O and para-H216O lines with relatively lower upper state energies (∼a few 100 K) can also locate the position of the H2O snowline. We also investigate the possibility of future observations with ALMA to identify the position of the water snowline. There are several candidate water lines that trace the hot water gas inside the H2O snowline in ALMA Bands 5–10
A UV-to-NIR Study of Molecular Gas in the Dust Cavity around RY Lupi
We present a study of molecular gas in the inner disk (r ∼ 0.4± 0.1 au; {r(narrow,H₂)} ∼ 3± 2 au). The 4.7 μm ¹²CO emission lines are also well fit by two-component profiles ( {{r}broad,CO} =0.4± 0.1 au; {{r}narrow,CO} =15± 2 au). We combine these results with 10 μm observations to form a picture of gapped structure within the mm-imaged dust cavity, providing the first such overview of the inner regions of a young disk. The HST SED of RY Lupi is available online for use in modeling efforts
An Overview of the 2014 ALMA Long Baseline Campaign
A major goal of the Atacama Large Millimeter/submillimeter Array (ALMA) is to
make accurate images with resolutions of tens of milliarcseconds, which at
submillimeter (submm) wavelengths requires baselines up to ~15 km. To develop
and test this capability, a Long Baseline Campaign (LBC) was carried out from
September to late November 2014, culminating in end-to-end observations,
calibrations, and imaging of selected Science Verification (SV) targets. This
paper presents an overview of the campaign and its main results, including an
investigation of the short-term coherence properties and systematic phase
errors over the long baselines at the ALMA site, a summary of the SV targets
and observations, and recommendations for science observing strategies at long
baselines. Deep ALMA images of the quasar 3C138 at 97 and 241 GHz are also
compared to VLA 43 GHz results, demonstrating an agreement at a level of a few
percent. As a result of the extensive program of LBC testing, the highly
successful SV imaging at long baselines achieved angular resolutions as fine as
19 mas at ~350 GHz. Observing with ALMA on baselines of up to 15 km is now
possible, and opens up new parameter space for submm astronomy.Comment: 11 pages, 7 figures, 2 tables; accepted for publication in the
  Astrophysical Journal Letters; this version with small changes to
  affiliation
- …
